17490 lines
1.3 MiB
17490 lines
1.3 MiB
var Live2DCubismCore;
|
|
!(function(Live2DCubismCore) {
|
|
var _scriptDir,
|
|
_csm = (function() {
|
|
function _csm() {}
|
|
return (
|
|
(_csm.getVersion = function() {
|
|
return _em.ccall("csmGetVersion", "number", [], []);
|
|
}),
|
|
(_csm.getLatestMocVersion = function() {
|
|
return _em.ccall("csmGetLatestMocVersion", "number", [], []);
|
|
}),
|
|
(_csm.getMocVersion = function(moc, mocSize) {
|
|
return _em.ccall(
|
|
"csmGetMocVersion",
|
|
"number", ["number", "number"], [moc, mocSize]
|
|
);
|
|
}),
|
|
(_csm.getSizeofModel = function(moc) {
|
|
return _em.ccall("csmGetSizeofModel", "number", ["number"], [moc]);
|
|
}),
|
|
(_csm.reviveMocInPlace = function(memory, mocSize) {
|
|
return _em.ccall(
|
|
"csmReviveMocInPlace",
|
|
"number", ["number", "number"], [memory, mocSize]
|
|
);
|
|
}),
|
|
(_csm.initializeModelInPlace = function(moc, memory, modelSize) {
|
|
return _em.ccall(
|
|
"csmInitializeModelInPlace",
|
|
"number", ["number", "number", "number"], [moc, memory, modelSize]
|
|
);
|
|
}),
|
|
(_csm.hasMocConsistency = function(memory, mocSize) {
|
|
return _em.ccall(
|
|
"csmHasMocConsistency",
|
|
"number", ["number", "number"], [memory, mocSize]
|
|
);
|
|
}),
|
|
(_csm.getParameterCount = function(model) {
|
|
return _em.ccall(
|
|
"csmGetParameterCount",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getParameterIds = function(model) {
|
|
return _em.ccall("csmGetParameterIds", "number", ["number"], [model]);
|
|
}),
|
|
(_csm.getParameterMinimumValues = function(model) {
|
|
return _em.ccall(
|
|
"csmGetParameterMinimumValues",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getParameterTypes = function(model) {
|
|
return _em.ccall(
|
|
"csmGetParameterTypes",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getParameterMaximumValues = function(model) {
|
|
return _em.ccall(
|
|
"csmGetParameterMaximumValues",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getParameterDefaultValues = function(model) {
|
|
return _em.ccall(
|
|
"csmGetParameterDefaultValues",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getParameterValues = function(model) {
|
|
return _em.ccall(
|
|
"csmGetParameterValues",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getParameterKeyCounts = function(model) {
|
|
return _em.ccall(
|
|
"csmGetParameterKeyCounts",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getParameterKeyValues = function(model) {
|
|
return _em.ccall(
|
|
"csmGetParameterKeyValues",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getPartCount = function(model) {
|
|
return _em.ccall("csmGetPartCount", "number", ["number"], [model]);
|
|
}),
|
|
(_csm.getPartIds = function(model) {
|
|
return _em.ccall("csmGetPartIds", "number", ["number"], [model]);
|
|
}),
|
|
(_csm.getPartOpacities = function(model) {
|
|
return _em.ccall(
|
|
"csmGetPartOpacities",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getPartParentPartIndices = function(model) {
|
|
return _em.ccall(
|
|
"csmGetPartParentPartIndices",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableCount = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableCount",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableIds = function(model) {
|
|
return _em.ccall("csmGetDrawableIds", "number", ["number"], [model]);
|
|
}),
|
|
(_csm.getDrawableConstantFlags = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableConstantFlags",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableDynamicFlags = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableDynamicFlags",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableTextureIndices = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableTextureIndices",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableDrawOrders = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableDrawOrders",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableRenderOrders = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableRenderOrders",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableOpacities = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableOpacities",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableMaskCounts = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableMaskCounts",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableMasks = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableMasks",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableVertexCounts = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableVertexCounts",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableVertexPositions = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableVertexPositions",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableVertexUvs = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableVertexUvs",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableIndexCounts = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableIndexCounts",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableIndices = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableIndices",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableMultiplyColors = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableMultiplyColors",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableScreenColors = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableScreenColors",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.getDrawableParentPartIndices = function(model) {
|
|
return _em.ccall(
|
|
"csmGetDrawableParentPartIndices",
|
|
"number", ["number"], [model]
|
|
);
|
|
}),
|
|
(_csm.mallocMoc = function(mocSize) {
|
|
return _em.ccall("csmMallocMoc", "number", ["number"], [mocSize]);
|
|
}),
|
|
(_csm.mallocModelAndInitialize = function(moc) {
|
|
return _em.ccall(
|
|
"csmMallocModelAndInitialize",
|
|
"number", ["number"], [moc]
|
|
);
|
|
}),
|
|
(_csm.malloc = function(size) {
|
|
return _em.ccall("csmMalloc", "number", ["number"], [size]);
|
|
}),
|
|
(_csm.setLogFunction = function(handler) {
|
|
_em.ccall("csmSetLogFunction", null, ["number"], [handler]);
|
|
}),
|
|
(_csm.updateModel = function(model) {
|
|
_em.ccall("csmUpdateModel", null, ["number"], [model]);
|
|
}),
|
|
(_csm.readCanvasInfo = function(
|
|
model,
|
|
outSizeInPixels,
|
|
outOriginInPixels,
|
|
outPixelsPerUnit
|
|
) {
|
|
_em.ccall(
|
|
"csmReadCanvasInfo",
|
|
null, ["number", "number", "number", "number"], [model, outSizeInPixels, outOriginInPixels, outPixelsPerUnit]
|
|
);
|
|
}),
|
|
(_csm.resetDrawableDynamicFlags = function(model) {
|
|
_em.ccall("csmResetDrawableDynamicFlags", null, ["number"], [model]);
|
|
}),
|
|
(_csm.free = function(memory) {
|
|
_em.ccall("csmFree", null, ["number"], [memory]);
|
|
}),
|
|
(_csm.initializeAmountOfMemory = function(size) {
|
|
_em.ccall("csmInitializeAmountOfMemory", null, ["number"], [size]);
|
|
}),
|
|
_csm
|
|
);
|
|
})(),
|
|
Version =
|
|
((Live2DCubismCore.AlignofMoc = 64),
|
|
(Live2DCubismCore.AlignofModel = 16),
|
|
(Live2DCubismCore.MocVersion_Unknown = 0),
|
|
(Live2DCubismCore.MocVersion_30 = 1),
|
|
(Live2DCubismCore.MocVersion_33 = 2),
|
|
(Live2DCubismCore.MocVersion_40 = 3),
|
|
(Live2DCubismCore.MocVersion_42 = 4),
|
|
(Live2DCubismCore.MocVersion_50 = 5),
|
|
(Live2DCubismCore.ParameterType_Normal = 0),
|
|
(Live2DCubismCore.ParameterType_BlendShape = 1),
|
|
(function() {
|
|
function Version() {}
|
|
return (
|
|
(Version.csmGetVersion = function() {
|
|
return _csm.getVersion();
|
|
}),
|
|
(Version.csmGetLatestMocVersion = function() {
|
|
return _csm.getLatestMocVersion();
|
|
}),
|
|
(Version.csmGetMocVersion = function(moc, mocBytes) {
|
|
return _csm.getMocVersion(moc._ptr, mocBytes.byteLength);
|
|
}),
|
|
Version
|
|
);
|
|
})()),
|
|
Version =
|
|
((Live2DCubismCore.Version = Version),
|
|
(function() {
|
|
function Logging() {}
|
|
return (
|
|
(Logging.csmSetLogFunction = function(handler) {
|
|
Logging.logFunction = handler;
|
|
handler = _em.addFunction(Logging.wrapLogFunction, "vi");
|
|
_csm.setLogFunction(handler);
|
|
}),
|
|
(Logging.csmGetLogFunction = function() {
|
|
return Logging.logFunction;
|
|
}),
|
|
(Logging.wrapLogFunction = function(messagePtr) {
|
|
messagePtr = _em.UTF8ToString(messagePtr);
|
|
Logging.logFunction(messagePtr);
|
|
}),
|
|
Logging
|
|
);
|
|
})()),
|
|
Version =
|
|
((Live2DCubismCore.Logging = Version),
|
|
(function() {
|
|
function Moc(mocBytes) {
|
|
var memory = _csm.mallocMoc(mocBytes.byteLength);
|
|
memory &&
|
|
(new Uint8Array(_em.HEAPU8.buffer, memory, mocBytes.byteLength).set(
|
|
new Uint8Array(mocBytes)
|
|
),
|
|
(this._ptr = _csm.reviveMocInPlace(memory, mocBytes.byteLength)),
|
|
this._ptr || _csm.free(memory));
|
|
}
|
|
return (
|
|
(Moc.prototype.hasMocConsistency = function(mocBytes) {
|
|
var memory = _csm.mallocMoc(mocBytes.byteLength);
|
|
if (memory)
|
|
return (
|
|
new Uint8Array(
|
|
_em.HEAPU8.buffer,
|
|
memory,
|
|
mocBytes.byteLength
|
|
).set(new Uint8Array(mocBytes)),
|
|
(mocBytes = _csm.hasMocConsistency(
|
|
memory,
|
|
mocBytes.byteLength
|
|
)),
|
|
_csm.free(memory),
|
|
mocBytes
|
|
);
|
|
}),
|
|
(Moc.fromArrayBuffer = function(buffer) {
|
|
return buffer && (buffer = new Moc(buffer))._ptr ? buffer : null;
|
|
}),
|
|
(Moc.prototype._release = function() {
|
|
_csm.free(this._ptr), (this._ptr = 0);
|
|
}),
|
|
Moc
|
|
);
|
|
})()),
|
|
Version =
|
|
((Live2DCubismCore.Moc = Version),
|
|
(function() {
|
|
function Model(moc) {
|
|
(this._ptr = _csm.mallocModelAndInitialize(moc._ptr)),
|
|
this._ptr &&
|
|
((this.parameters = new Parameters(this._ptr)),
|
|
(this.parts = new Parts(this._ptr)),
|
|
(this.drawables = new Drawables(this._ptr)),
|
|
(this.canvasinfo = new CanvasInfo(this._ptr)));
|
|
}
|
|
return (
|
|
(Model.fromMoc = function(moc) {
|
|
moc = new Model(moc);
|
|
return moc._ptr ? moc : null;
|
|
}),
|
|
(Model.prototype.update = function() {
|
|
_csm.updateModel(this._ptr);
|
|
}),
|
|
(Model.prototype.release = function() {
|
|
_csm.free(this._ptr), (this._ptr = 0);
|
|
}),
|
|
Model
|
|
);
|
|
})()),
|
|
CanvasInfo =
|
|
((Live2DCubismCore.Model = Version),
|
|
function(modelPtr) {
|
|
var _canvasSize_data,
|
|
_canvasSize_dataPtr,
|
|
_canvasSize_nDataBytes,
|
|
_canvasOrigin_dataPtr,
|
|
_canvasOrigin_nDataBytes,
|
|
_canvasPPU_nDataBytes,
|
|
_canvasPPU_dataPtr;
|
|
modelPtr &&
|
|
((_canvasSize_nDataBytes =
|
|
(_canvasSize_data = new Float32Array(2)).length *
|
|
_canvasSize_data.BYTES_PER_ELEMENT),
|
|
(_canvasSize_dataPtr = _csm.malloc(_canvasSize_nDataBytes)),
|
|
(_canvasSize_dataPtr = new Uint8Array(
|
|
_em.HEAPU8.buffer,
|
|
_canvasSize_dataPtr,
|
|
_canvasSize_nDataBytes
|
|
)).set(new Uint8Array(_canvasSize_data.buffer)),
|
|
(_canvasOrigin_nDataBytes =
|
|
(_canvasSize_nDataBytes = new Float32Array(2)).length *
|
|
_canvasSize_nDataBytes.BYTES_PER_ELEMENT),
|
|
(_canvasOrigin_dataPtr = _csm.malloc(_canvasOrigin_nDataBytes)),
|
|
(_canvasOrigin_dataPtr = new Uint8Array(
|
|
_em.HEAPU8.buffer,
|
|
_canvasOrigin_dataPtr,
|
|
_canvasOrigin_nDataBytes
|
|
)).set(new Uint8Array(_canvasSize_nDataBytes.buffer)),
|
|
(_canvasPPU_nDataBytes =
|
|
(_canvasOrigin_nDataBytes = new Float32Array(1)).length *
|
|
_canvasOrigin_nDataBytes.BYTES_PER_ELEMENT),
|
|
(_canvasPPU_dataPtr = _csm.malloc(_canvasPPU_nDataBytes)),
|
|
(_canvasPPU_dataPtr = new Uint8Array(
|
|
_em.HEAPU8.buffer,
|
|
_canvasPPU_dataPtr,
|
|
_canvasPPU_nDataBytes
|
|
)).set(new Uint8Array(_canvasOrigin_nDataBytes.buffer)),
|
|
_csm.readCanvasInfo(
|
|
modelPtr,
|
|
_canvasSize_dataPtr.byteOffset,
|
|
_canvasOrigin_dataPtr.byteOffset,
|
|
_canvasPPU_dataPtr.byteOffset
|
|
),
|
|
(_canvasSize_data = new Float32Array(
|
|
_canvasSize_dataPtr.buffer,
|
|
_canvasSize_dataPtr.byteOffset,
|
|
_canvasSize_dataPtr.length
|
|
)),
|
|
(_canvasSize_nDataBytes = new Float32Array(
|
|
_canvasOrigin_dataPtr.buffer,
|
|
_canvasOrigin_dataPtr.byteOffset,
|
|
_canvasOrigin_dataPtr.length
|
|
)),
|
|
(_canvasOrigin_nDataBytes = new Float32Array(
|
|
_canvasPPU_dataPtr.buffer,
|
|
_canvasPPU_dataPtr.byteOffset,
|
|
_canvasPPU_dataPtr.length
|
|
)),
|
|
(this.CanvasWidth = _canvasSize_data[0]),
|
|
(this.CanvasHeight = _canvasSize_data[1]),
|
|
(this.CanvasOriginX = _canvasSize_nDataBytes[0]),
|
|
(this.CanvasOriginY = _canvasSize_nDataBytes[1]),
|
|
(this.PixelsPerUnit = _canvasOrigin_nDataBytes[0]),
|
|
_csm.free(_canvasSize_dataPtr.byteOffset),
|
|
_csm.free(_canvasOrigin_dataPtr.byteOffset),
|
|
_csm.free(_canvasPPU_dataPtr.byteOffset));
|
|
}),
|
|
Parameters =
|
|
((Live2DCubismCore.CanvasInfo = CanvasInfo),
|
|
function(modelPtr) {
|
|
(this.count = _csm.getParameterCount(modelPtr)),
|
|
(length = _csm.getParameterCount(modelPtr)),
|
|
(this.ids = new Array(length));
|
|
for (
|
|
var length,
|
|
length2,
|
|
_ids = new Uint32Array(
|
|
_em.HEAPU32.buffer,
|
|
_csm.getParameterIds(modelPtr),
|
|
length
|
|
),
|
|
i = 0; i < _ids.length; i++
|
|
)
|
|
this.ids[i] = _em.UTF8ToString(_ids[i]);
|
|
(length = _csm.getParameterCount(modelPtr)),
|
|
(this.minimumValues = new Float32Array(
|
|
_em.HEAPF32.buffer,
|
|
_csm.getParameterMinimumValues(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getParameterCount(modelPtr)),
|
|
(this.types = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getParameterTypes(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getParameterCount(modelPtr)),
|
|
(this.maximumValues = new Float32Array(
|
|
_em.HEAPF32.buffer,
|
|
_csm.getParameterMaximumValues(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getParameterCount(modelPtr)),
|
|
(this.defaultValues = new Float32Array(
|
|
_em.HEAPF32.buffer,
|
|
_csm.getParameterDefaultValues(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getParameterCount(modelPtr)),
|
|
(this.values = new Float32Array(
|
|
_em.HEAPF32.buffer,
|
|
_csm.getParameterValues(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getParameterCount(modelPtr)),
|
|
(this.keyCounts = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getParameterKeyCounts(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getParameterCount(modelPtr)),
|
|
(length2 = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getParameterKeyCounts(modelPtr),
|
|
length
|
|
)),
|
|
(this.keyValues = new Array(length));
|
|
for (
|
|
var _keyValues = new Uint32Array(
|
|
_em.HEAPU32.buffer,
|
|
_csm.getParameterKeyValues(modelPtr),
|
|
length
|
|
),
|
|
i = 0; i < _keyValues.length; i++
|
|
)
|
|
this.keyValues[i] = new Float32Array(
|
|
_em.HEAPF32.buffer,
|
|
_keyValues[i],
|
|
length2[i]
|
|
);
|
|
}),
|
|
Parts =
|
|
((Live2DCubismCore.Parameters = Parameters),
|
|
function(modelPtr) {
|
|
(this.count = _csm.getPartCount(modelPtr)),
|
|
(length = _csm.getPartCount(modelPtr)),
|
|
(this.ids = new Array(length));
|
|
for (
|
|
var length,
|
|
_ids = new Uint32Array(
|
|
_em.HEAPU32.buffer,
|
|
_csm.getPartIds(modelPtr),
|
|
length
|
|
),
|
|
i = 0; i < _ids.length; i++
|
|
)
|
|
this.ids[i] = _em.UTF8ToString(_ids[i]);
|
|
(length = _csm.getPartCount(modelPtr)),
|
|
(this.opacities = new Float32Array(
|
|
_em.HEAPF32.buffer,
|
|
_csm.getPartOpacities(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getPartCount(modelPtr)),
|
|
(this.parentIndices = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getPartParentPartIndices(modelPtr),
|
|
length
|
|
));
|
|
}),
|
|
Drawables =
|
|
((Live2DCubismCore.Parts = Parts),
|
|
(function() {
|
|
function Drawables(modelPtr) {
|
|
this._modelPtr = modelPtr;
|
|
for (
|
|
var length,
|
|
length2 = null,
|
|
_ids =
|
|
((this.count = _csm.getDrawableCount(modelPtr)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.ids = new Array(length)),
|
|
new Uint32Array(
|
|
_em.HEAPU32.buffer,
|
|
_csm.getDrawableIds(modelPtr),
|
|
length
|
|
)),
|
|
i = 0; i < _ids.length; i++
|
|
)
|
|
this.ids[i] = _em.UTF8ToString(_ids[i]);
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.constantFlags = new Uint8Array(
|
|
_em.HEAPU8.buffer,
|
|
_csm.getDrawableConstantFlags(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.dynamicFlags = new Uint8Array(
|
|
_em.HEAPU8.buffer,
|
|
_csm.getDrawableDynamicFlags(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.textureIndices = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getDrawableTextureIndices(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.drawOrders = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getDrawableDrawOrders(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.renderOrders = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getDrawableRenderOrders(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.opacities = new Float32Array(
|
|
_em.HEAPF32.buffer,
|
|
_csm.getDrawableOpacities(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.maskCounts = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getDrawableMaskCounts(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.vertexCounts = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getDrawableVertexCounts(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.indexCounts = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getDrawableIndexCounts(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.multiplyColors = new Float32Array(
|
|
_em.HEAPF32.buffer,
|
|
_csm.getDrawableMultiplyColors(modelPtr),
|
|
4 * length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.screenColors = new Float32Array(
|
|
_em.HEAPF32.buffer,
|
|
_csm.getDrawableScreenColors(modelPtr),
|
|
4 * length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(this.parentPartIndices = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getDrawableParentPartIndices(modelPtr),
|
|
length
|
|
)),
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(length2 = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getDrawableMaskCounts(modelPtr),
|
|
length
|
|
)),
|
|
(this.masks = new Array(length));
|
|
for (
|
|
var _masks = new Uint32Array(
|
|
_em.HEAPU32.buffer,
|
|
_csm.getDrawableMasks(modelPtr),
|
|
length
|
|
),
|
|
i = 0; i < _masks.length; i++
|
|
)
|
|
this.masks[i] = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_masks[i],
|
|
length2[i]
|
|
);
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(length2 = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getDrawableVertexCounts(modelPtr),
|
|
length
|
|
)),
|
|
(this.vertexPositions = new Array(length));
|
|
for (
|
|
var _vertexPositions = new Uint32Array(
|
|
_em.HEAPU32.buffer,
|
|
_csm.getDrawableVertexPositions(modelPtr),
|
|
length
|
|
),
|
|
i = 0; i < _vertexPositions.length; i++
|
|
)
|
|
this.vertexPositions[i] = new Float32Array(
|
|
_em.HEAPF32.buffer,
|
|
_vertexPositions[i],
|
|
2 * length2[i]
|
|
);
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(length2 = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getDrawableVertexCounts(modelPtr),
|
|
length
|
|
)),
|
|
(this.vertexUvs = new Array(length));
|
|
for (
|
|
var _vertexUvs = new Uint32Array(
|
|
_em.HEAPU32.buffer,
|
|
_csm.getDrawableVertexUvs(modelPtr),
|
|
length
|
|
),
|
|
i = 0; i < _vertexUvs.length; i++
|
|
)
|
|
this.vertexUvs[i] = new Float32Array(
|
|
_em.HEAPF32.buffer,
|
|
_vertexUvs[i],
|
|
2 * length2[i]
|
|
);
|
|
(length = _csm.getDrawableCount(modelPtr)),
|
|
(length2 = new Int32Array(
|
|
_em.HEAP32.buffer,
|
|
_csm.getDrawableIndexCounts(modelPtr),
|
|
length
|
|
)),
|
|
(this.indices = new Array(length));
|
|
for (
|
|
var _indices = new Uint32Array(
|
|
_em.HEAPU32.buffer,
|
|
_csm.getDrawableIndices(modelPtr),
|
|
length
|
|
),
|
|
i = 0; i < _indices.length; i++
|
|
)
|
|
this.indices[i] = new Uint16Array(
|
|
_em.HEAPU16.buffer,
|
|
_indices[i],
|
|
length2[i]
|
|
);
|
|
}
|
|
return (
|
|
(Drawables.prototype.resetDynamicFlags = function() {
|
|
_csm.resetDrawableDynamicFlags(this._modelPtr);
|
|
}),
|
|
Drawables
|
|
);
|
|
})()),
|
|
Version =
|
|
((Live2DCubismCore.Drawables = Drawables),
|
|
(function() {
|
|
function Utils() {}
|
|
return (
|
|
(Utils.hasBlendAdditiveBit = function(bitfield) {
|
|
return 1 == (1 & bitfield);
|
|
}),
|
|
(Utils.hasBlendMultiplicativeBit = function(bitfield) {
|
|
return 2 == (2 & bitfield);
|
|
}),
|
|
(Utils.hasIsDoubleSidedBit = function(bitfield) {
|
|
return 4 == (4 & bitfield);
|
|
}),
|
|
(Utils.hasIsInvertedMaskBit = function(bitfield) {
|
|
return 8 == (8 & bitfield);
|
|
}),
|
|
(Utils.hasIsVisibleBit = function(bitfield) {
|
|
return 1 == (1 & bitfield);
|
|
}),
|
|
(Utils.hasVisibilityDidChangeBit = function(bitfield) {
|
|
return 2 == (2 & bitfield);
|
|
}),
|
|
(Utils.hasOpacityDidChangeBit = function(bitfield) {
|
|
return 4 == (4 & bitfield);
|
|
}),
|
|
(Utils.hasDrawOrderDidChangeBit = function(bitfield) {
|
|
return 8 == (8 & bitfield);
|
|
}),
|
|
(Utils.hasRenderOrderDidChangeBit = function(bitfield) {
|
|
return 16 == (16 & bitfield);
|
|
}),
|
|
(Utils.hasVertexPositionsDidChangeBit = function(bitfield) {
|
|
return 32 == (32 & bitfield);
|
|
}),
|
|
(Utils.hasBlendColorDidChangeBit = function(bitfield) {
|
|
return 64 == (64 & bitfield);
|
|
}),
|
|
Utils
|
|
);
|
|
})()),
|
|
Version =
|
|
((Live2DCubismCore.Utils = Version),
|
|
(function() {
|
|
function Memory() {}
|
|
return (
|
|
(Memory.initializeAmountOfMemory = function(size) {
|
|
16777216 < size && _csm.initializeAmountOfMemory(size);
|
|
}),
|
|
Memory
|
|
);
|
|
})()),
|
|
_em_module =
|
|
((Live2DCubismCore.Memory = Version),
|
|
(_scriptDir =
|
|
"undefined" != typeof document && document.currentScript ?
|
|
document.currentScript.src :
|
|
void 0),
|
|
function(_em_module) {
|
|
_em_module = _em_module || {};
|
|
var b,
|
|
n,
|
|
l = {};
|
|
for (n in (b = b || (void 0 !== _em_module ? _em_module : {})))
|
|
b.hasOwnProperty(n) && (l[n] = b[n]);
|
|
var x,
|
|
y,
|
|
v,
|
|
w,
|
|
r = !1,
|
|
p = "object" == typeof window,
|
|
q = "function" == typeof importScripts,
|
|
r =
|
|
"object" == typeof process &&
|
|
"object" == typeof process.versions &&
|
|
"string" == typeof process.versions.node &&
|
|
!p &&
|
|
!q,
|
|
t = !p && !r && !q,
|
|
u = "",
|
|
D =
|
|
(r ?
|
|
((u = __dirname + "/"),
|
|
(v = function(a, c) {
|
|
var d = z(a);
|
|
return (
|
|
d ||
|
|
((x = x || require("fs")),
|
|
(a = (y = y || require("path")).normalize(a)),
|
|
(d = x.readFileSync(a))),
|
|
c ? d : d.toString()
|
|
);
|
|
}),
|
|
(w = function(a) {
|
|
return (
|
|
assert(
|
|
(a = (a = v(a, !0)).buffer ? a : new Uint8Array(a)).buffer
|
|
),
|
|
a
|
|
);
|
|
}),
|
|
1 < process.argv.length && process.argv[1].replace(/\\/g, "/"),
|
|
process.argv.slice(2),
|
|
process.on("uncaughtException", function(a) {
|
|
throw a;
|
|
}),
|
|
process.on("unhandledRejection", B),
|
|
(b.inspect = function() {
|
|
return "[Emscripten Module object]";
|
|
})) :
|
|
t ?
|
|
("undefined" != typeof read &&
|
|
(v = function(a) {
|
|
var c = z(a);
|
|
return c ? C(c) : read(a);
|
|
}),
|
|
(w = function(a) {
|
|
var c;
|
|
if (!(c = z(a))) {
|
|
if ("function" == typeof readbuffer)
|
|
return new Uint8Array(readbuffer(a));
|
|
assert("object" == typeof(c = read(a, "binary")));
|
|
}
|
|
return c;
|
|
}),
|
|
"undefined" != typeof print &&
|
|
(((console =
|
|
"undefined" == typeof console ? {} : console).log = print),
|
|
(console.warn = console.error =
|
|
"undefined" != typeof printErr ? printErr : print))) :
|
|
(p || q) &&
|
|
(q ?
|
|
(u = self.location.href) :
|
|
document.currentScript && (u = document.currentScript.src),
|
|
(u =
|
|
0 !== (u = _scriptDir || u).indexOf("blob:") ?
|
|
u.substr(0, u.lastIndexOf("/") + 1) :
|
|
""),
|
|
(v = function(a) {
|
|
try {
|
|
var c = new XMLHttpRequest();
|
|
return c.open("GET", a, !1), c.send(null), c.responseText;
|
|
} catch (d) {
|
|
if ((a = z(a))) return C(a);
|
|
throw d;
|
|
}
|
|
}),
|
|
q) &&
|
|
(w = function(a) {
|
|
try {
|
|
var c = new XMLHttpRequest();
|
|
return (
|
|
c.open("GET", a, !1),
|
|
(c.responseType = "arraybuffer"),
|
|
c.send(null),
|
|
new Uint8Array(c.response)
|
|
);
|
|
} catch (d) {
|
|
if ((a = z(a))) return a;
|
|
throw d;
|
|
}
|
|
}),
|
|
b.print || console.log.bind(console)),
|
|
E = b.printErr || console.warn.bind(console);
|
|
for (n in l) l.hasOwnProperty(n) && (b[n] = l[n]);
|
|
|
|
function da() {
|
|
return {
|
|
exports: (function(asmLibraryArg, wasmMemory, wasmTable) {
|
|
var scratchBuffer = new ArrayBuffer(8),
|
|
b = new Int32Array(scratchBuffer),
|
|
c = new Float32Array(scratchBuffer),
|
|
d = new Float64Array(scratchBuffer);
|
|
|
|
function f(index, value) {
|
|
b[index] = value;
|
|
}
|
|
|
|
function g() {
|
|
return d[0];
|
|
}
|
|
|
|
function h(value) {
|
|
d[0] = value;
|
|
}
|
|
|
|
function j(value) {
|
|
c[0] = value;
|
|
}
|
|
|
|
function k() {
|
|
return c[0];
|
|
}
|
|
scratchBuffer = wasmMemory.buffer;
|
|
var U,
|
|
global,
|
|
buffer,
|
|
m,
|
|
n,
|
|
o,
|
|
p,
|
|
q,
|
|
r,
|
|
s,
|
|
t,
|
|
u,
|
|
v,
|
|
w,
|
|
x,
|
|
y,
|
|
z,
|
|
A,
|
|
C,
|
|
H,
|
|
I,
|
|
J,
|
|
K,
|
|
L,
|
|
M,
|
|
U = new Uint8Array(scratchBuffer);
|
|
return (
|
|
(scratchBuffer = function(offset, s) {
|
|
var V, W;
|
|
if ("undefined" == typeof Buffer)
|
|
for (V = atob(s), W = 0; W < V.length; W++)
|
|
U[offset + W] = V.charCodeAt(W);
|
|
else
|
|
for (V = Buffer.from(s, "base64"), W = 0; W < V.length; W++)
|
|
U[offset + W] = V[W];
|
|
})(
|
|
1024,
|
|
"QW4gZXJyb3Igb2NjdXJyZWQgaW4gdGhlIGludGVycG9sYXRpb24gZm9yIGJsZW5kIHNoYXBlcy4gQ29tYmluYXRpb25Db3VudCBpcyAlZC4ACgBbQ1NNXSBbRV1XYXJwRGVmb3JtZXI6OlRyYW5zZm9ybVRhcmdldCgpIGVycm9yLiBbJWRdIHAwMT0oJS40ZiAsICUuNGYpCgBbQ1NNXSBbRV1Jbml0aWFsaXplRGVmb3JtZXJzKCk6IFVua25vd24gRGVmb3JtZXIgVHlwZS4KAFtDU01dIFtFXWNzbUhhc01vY0NvbnNpc3RlbmN5OiBUaGlzIG1vYzMgc2l6ZSBpcyBpbnZhbGlkLgoAW0NTTV0gW0VdJXM6ICVzCgBbQ1NNXSBbV11Sb3RhdGlvbkRlZm9ybWVyOiBOb3QgZm91bmQgdHJhbnNmb3JtZWQgRGlyZWN0aW9uLgoAW0NTTV0gW0VdVXBkYXRlRGVmb3JtZXJIaWVyYXJjaHkoKTogVW5rbm93biBEZWZvcm1lciBUeXBlLgoAJXMKACAgAE1PQzMAImFkZHJlc3MiIGlzIG51bGwuACUwMlggAFtDU01dIFtFXWNzbUhhc01vY0NvbnNpc3RlbmN5OiBGaWxlVHlwZSBpcyBpbnZhbGlkLgoAImFkZHJlc3MiIGFsaWdubWVudCBpcyBpbnZhbGlkLgBbQ1NNXSBbRV1jc21IYXNNb2NDb25zaXN0ZW5jeTogVGhpcyBtb2MzIHZlciBpcyBpbnZhbGlkIFt2ZXI6JWRdLgoAInNpemUiIGlzIGludmFsaWQuAFtDU01dIFtFXWNzbUhhc01vY0NvbnNpc3RlbmN5OiBUaGUgQ29yZSB1bnN1cHBvcnQgbGF0ZXIgdGhhbiBtb2MzIHZlcjpbJWRdLiBUaGlzIG1vYzMgdmVyIGlzIFslZF0uCgAibW9kZWwiIGlzIGludmFsaWQuAFtDU01dIFtFXWNzbUhhc01vY0NvbnNpc3RlbmN5OiBIZWFkZXIgc2VjdGlvbiBpcyBpbnZhbGlkLgoAIm91dFNpemVJblBpeGVscyIgaXMgbnVsbC4AW0NTTV0gW0VdY3NtSGFzTW9jQ29uc2lzdGVuY3k6IERhdGEgc2VjdGlvbiBpcyBpbnZhbGlkLgoAIm91dE9yaWdpbkluUGl4ZWxzIiBpcyBudWxsLgBbQ1NNXSBbRV1jc21SZXZpdmVNb2NJblBsYWNlIGlzIGZhaWxlZC4gQ29ycnVwdGVkICBtb2MzIGZpbGUuCgAib3V0UGl4ZWxzUGVyVW5pdCIgaXMgbnVsbC4AW0NTTV0gW0VdY3NtUmV2aXZlTW9jSW5QbGFjZSBpcyBmYWlsZWQuIFRoZSBDb3JlIHVuc3VwcG9ydCBsYXRlciB0aGFuIG1vYzMgdmVyOlslZF0uIFRoaXMgbW9jMyB2ZXIgaXMgWyVkXS4KACJtb2MiIGlzIGludmFsaWQuAFtDU01dIFtFXWNzbUdldE1vY1ZlcnNpb24gaXMgZmFpbGVkLiBDb3JydXB0ZWQgbW9jMyBmaWxlLgoAInNpemUiIGlzIGludmFsaWQATGl2ZTJEIEN1YmlzbSBTREsgQ29yZSBWZXJzaW9uICVkLiVkLiVkAGNzbUdldE1vY1ZlcnNpb24AY3NtSGFzTW9jQ29uc2lzdGVuY3kAY3NtUmV2aXZlTW9jSW5QbGFjZQBjc21SZWFkQ2FudmFzSW5mbwBjc21HZXRTaXplb2ZNb2RlbABjc21Jbml0aWFsaXplTW9kZWxJblBsYWNlAGNzbVVwZGF0ZU1vZGVsAGNzbUdldFBhcmFtZXRlckNvdW50AGNzbUdldFBhcmFtZXRlcklkcwBjc21HZXRQYXJhbWV0ZXJUeXBlcwBjc21HZXRQYXJhbWV0ZXJNaW5pbXVtVmFsdWVzAGNzbUdldFBhcmFtZXRlck1heGltdW1WYWx1ZXMAY3NtR2V0UGFyYW1ldGVyRGVmYXVsdFZhbHVlcwBjc21HZXRQYXJhbWV0ZXJWYWx1ZXMAY3NtR2V0UGFydENvdW50AGNzbUdldFBhcnRJZHMAY3NtR2V0UGFydE9wYWNpdGllcwBjc21HZXRQYXJ0UGFyZW50UGFydEluZGljZXMAY3NtR2V0RHJhd2FibGVDb3VudABjc21HZXREcmF3YWJsZUlkcwBjc21HZXREcmF3YWJsZUNvbnN0YW50RmxhZ3MAY3NtR2V0RHJhd2FibGVEeW5hbWljRmxhZ3MAY3NtR2V0RHJhd2FibGVUZXh0dXJlSW5kaWNlcwBjc21HZXREcmF3YWJsZURyYXdPcmRlcnMAY3NtR2V0RHJhd2FibGVSZW5kZXJPcmRlcnMAY3NtR2V0RHJhd2FibGVPcGFjaXRpZXMAY3NtR2V0RHJhd2FibGVNYXNrQ291bnRzAGNzbUdldERyYXdhYmxlTWFza3MAY3NtR2V0RHJhd2FibGVWZXJ0ZXhDb3VudHMAY3NtR2V0RHJhd2FibGVWZXJ0ZXhQb3NpdGlvbnMAY3NtR2V0RHJhd2FibGVWZXJ0ZXhVdnMAY3NtR2V0RHJhd2FibGVJbmRleENvdW50cwBjc21HZXREcmF3YWJsZUluZGljZXMAY3NtR2V0RHJhd2FibGVNdWx0aXBseUNvbG9ycwBjc21HZXREcmF3YWJsZVNjcmVlbkNvbG9ycwBjc21HZXREcmF3YWJsZVBhcmVudFBhcnRJbmRpY2VzAGNzbVJlc2V0RHJhd2FibGVEeW5hbWljRmxhZ3MAY3NtR2V0UGFyYW1ldGVyS2V5Q291bnRzAGNzbUdldFBhcmFtZXRlcktleVZhbHVlcw=="
|
|
),
|
|
scratchBuffer(3228, "Cg=="),
|
|
scratchBuffer(3267, "//////8="),
|
|
scratchBuffer(3336, "LSsgICAwWDB4AChudWxsKQ=="),
|
|
scratchBuffer(3360, "EQAKABEREQAAAAAFAAAAAAAACQAAAAAL"),
|
|
scratchBuffer(
|
|
3392,
|
|
"EQAPChEREQMKBwABEwkLCwAACQYLAAALAAYRAAAAERER"
|
|
),
|
|
scratchBuffer(3441, "Cw=="),
|
|
scratchBuffer(3450, "EQAKChEREQAKAAACAAkLAAAACQALAAAL"),
|
|
scratchBuffer(3499, "DA=="),
|
|
scratchBuffer(3511, "DAAAAAAMAAAAAAkMAAAAAAAMAAAM"),
|
|
scratchBuffer(3557, "Dg=="),
|
|
scratchBuffer(3569, "DQAAAAQNAAAAAAkOAAAAAAAOAAAO"),
|
|
scratchBuffer(3615, "EA=="),
|
|
scratchBuffer(3627, "DwAAAAAPAAAAAAkQAAAAAAAQAAAQAAASAAAAEhIS"),
|
|
scratchBuffer(3682, "EgAAABISEgAAAAAAAAk="),
|
|
scratchBuffer(3731, "Cw=="),
|
|
scratchBuffer(3743, "CgAAAAAKAAAAAAkLAAAAAAALAAAL"),
|
|
scratchBuffer(3789, "DA=="),
|
|
scratchBuffer(
|
|
3801,
|
|
"DAAAAAAMAAAAAAkMAAAAAAAMAAAMAAAwMTIzNDU2Nzg5QUJDREVGLTBYKzBYIDBYLTB4KzB4IDB4AGluZgBJTkYAbmFuAE5BTgAuAAAAAKgaAAAAAAAAAwAAAAQAAAAEAAAABgAAAIP5ogBETm4A/CkVANFXJwDdNPUAYtvAADyZlQBBkEMAY1H+ALveqwC3YcUAOm4kANJNQgBJBuAACeouAByS0QDrHf4AKbEcAOg+pwD1NYIARLsuAJzphAC0JnAAQX5fANaROQBTgzkAnPQ5AItfhAAo+b0A+B87AN7/lwAPmAUAES/vAApaiwBtH20Az342AAnLJwBGT7cAnmY/AC3qXwC6J3UA5evHAD178QD3OQcAklKKAPtr6gAfsV8ACF2NADADVgB7/EYA8KtrACC8zwA29JoA46kdAF5hkQAIG+YAhZllAKAUXwCNQGgAgNj/ACdzTQAGBjEAylYVAMmocwB74mAAa4zAABnERwDNZ8MACejcAFmDKgCLdsQAphyWAESv3QAZV9EApT4FAAUH/wAzfj8AwjLoAJhP3gC7fTIAJj3DAB5r7wCf+F4ANR86AH/yygDxhx0AfJAhAGokfADVbvoAMC13ABU7QwC1FMYAwxmdAK3EwgAsTUEADABdAIZ9RgDjcS0Am8aaADNiAAC00nwAtKeXADdV1QDXPvYAoxAYAE12/ABknSoAcNerAGN8+AB6sFcAFxXnAMBJVgA71tkAp4Q4ACQjywDWincAWlQjAAAfuQDxChsAGc7fAJ8x/wBmHmoAmVdhAKz7RwB+f9gAImW3ADLoiQDmv2AA78TNAGw2CQBdP9QAFt7XAFg73gDem5IA0iIoACiG6ADiWE0AxsoyAAjjFgDgfcsAF8BQAPMdpwAY4FsALhM0AIMSYgCDSAEA9Y5bAK2wfwAe6fIASEpDABBn0wCq3dgArl9CAGphzgAKKKQA05m0AAam8gBcd38Ao8KDAGE8iACKc3gAr4xaAG/XvQAtpmMA9L/LAI2B7wAmwWcAVcpFAMrZNgAoqNIAwmGNABLJdwAEJhQAEkabAMRZxADIxUQATbKRAAAX8wDUQ60AKUnlAP3VEAAAvvwAHpTMAHDO7gATPvUA7PGAALPnwwDH+CgAkwWUAMFxPgAuCbMAC0XzAIgSnACrIHsALrWfAEeSwgB7Mi8ADFVtAHKnkABr5x8AMcuWAHkWSgBBeeIA9N+JAOiUlwDi5oQAmTGXAIjtawBfXzYAu/0OAEiatABnpGwAcXJCAI1dMgCfFbgAvOUJAI0xJQD3dDkAMAUcAA0MAQBLCGgALO5YAEeqkAB05wIAvdYkAPd9pgBuSHIAnxbvAI6UpgC0kfYA0VNRAM8K8gAgmDMA9Ut+ALJjaADdPl8AQF0DAIWJfwBVUikAN2TAAG3YEAAySDIAW0x1AE5x1ABFVG4ACwnBACr1aQAUZtUAJwedAF0EUAC0O9sA6nbFAIf5FwBJa30AHSe6AJZpKQDGzKwArRRUAJDiagCI2YkALHJQAASkvgB3B5QA8zBwAAD8JwDqcagAZsJJAGTgPQCX3YMAoz+XAEOU/QANhowAMUHeAJI5nQDdcIwAF7fnAAjfOwAVNysAXICgAFqAkwAQEZIAD+jYAGyArwDb/0sAOJAPAFkYdgBipRUAYcu7AMeJuQAQQL0A0vIEAEl1JwDrtvYA2yK7AAoUqgCJJi8AZIN2AAk7MwAOlBoAUTqqAB2jwgCv7a4AXCYSAG3CTQAtepwAwFaXAAM/gwAJ8PYAK0CMAG0xmQA5tAcADCAVANjDWwD1ksQAxq1LAE7KpQCnN80A5qk2AKuSlADdQmgAGWPeAHaM7wBoi1IA/Ns3AK6hqwDfFTEAAK6hAAz72gBkTWYA7QW3ACllMABXVr8AR/86AGr5uQB1vvMAKJPfAKuAMABmjPYABMsVAPoiBgDZ5B0APbOkAFcbjwA2zQkATkLpABO+pAAzI7UA8KoaAE9lqADSwaUACz8PAFt4zQAj+XYAe4sEAIkXcgDGplMAb27iAO/rAACbSlgAxNq3AKpmugB2z88A0QIdALHxLQCMmcEAw613AIZI2gD3XaAAxoD0AKzwLwDd7JoAP1y8ANDebQCQxx8AKtu2AKMlOgAAr5oArVOTALZXBAApLbQAS4B+ANoHpwB2qg4Ae1mhABYSKgDcty0A+uX9AInb/gCJvv0A5HZsAAap/AA+gHAAhW4VAP2H/wAoPgcAYWczACoYhgBNveoAs+evAI9tbgCVZzkAMb9bAITXSAAw3xYAxy1DACVhNQDJcM4AMMu4AL9s/QCkAKIABWzkAFrdoAAhb0cAYhLSALlchABwYUkAa1bgAJlSAQBQVTcAHtW3ADPxxAATbl8AXTDkAIUuqQAdssMAoTI2AAi3pADqsdQAFvchAI9p5AAn/3cADAOAAI1ALQBPzaAAIKWZALOi0wAvXQoAtPlCABHaywB9vtAAm9vBAKsXvQDKooEACGpcAC5VFwAnAFUAfxTwAOEHhgAUC2QAlkGNAIe+3gDa/SoAayW2AHuJNAAF8/4Aub+eAGhqTwBKKqgAT8RaAC34vADXWpgA9MeVAA1NjQAgOqYApFdfABQ/sQCAOJUAzCABAHHdhgDJ3rYAv2D1AE1lEQABB2sAjLCsALLA0ABRVUgAHvsOAJVywwCjBjsAwEA1AAbcewDgRcwATin6ANbKyADo80EAfGTeAJtk2ADZvjEApJfDAHdY1ABp48UA8NoTALo6PABGGEYAVXVfANK99QBuksYArC5dAA5E7QAcPkIAYcSHACn96QDn1vMAInzKAG+RNQAI4MUA/9eNAG5q4gCw/cYAkwjBAHxddABrrbIAzW6dAD5yewDGEWoA98+pAClz3wC1yboAtwBRAOKyDQB0uiQA5X1gAHTYigANFSwAgRgMAH5mlAABKRYAn3p2AP39vgBWRe8A2X42AOzZEwCLurkAxJf8ADGoJwDxbsMAlMU2ANioVgC0qLUAz8wOABKJLQBvVzQALFaJAJnO4wDWILkAa16qAD4qnAARX8wA/QtKAOH0+wCOO20A4oYsAOnUhAD8tKkA7+7RAC41yQAvOWEAOCFEABvZyACB/AoA+0pqAC8c2ABTtIQATpmMAFQizAAqVdwAwMbWAAsZlgAacLgAaZVkACZaYAA/Uu4AfxEPAPS1EQD8y/UANLwtADS87gDoXcwA3V5gAGeOmwCSM+8AyRe4AGFYmwDhV7wAUYPGANg+EADdcUgALRzdAK8YoQAhLEYAWfPXANl6mACeVMAAT4b6AFYG/ADlea4AiSI2ADitIgBnk9wAVeiqAIImOADK55sAUQ2kAJkzsQCp1w4AaQVIAGWy8AB/iKcAiEyXAPnRNgAhkrMAe4JKAJjPIQBAn9wA3EdVAOF0OgBn60IA/p3fAF7UXwB7Z6QAuqx6AFX2ogAriCMAQbpVAFluCAAhKoYAOUeDAInj5gDlntQASftAAP9W6QAcD8oAxVmKAJT6KwDTwcUAD8XPANtargBHxYYAhUNiACGGOwAseZQAEGGHACpMewCALBoAQ78SAIgmkAB4PIkAqMTkAOXbewDEOsIAJvTqAPdnigANkr8AZaMrAD2TsQC9fAsApFHcACfdYwBp4d0AmpQZAKgplQBozigACe20AESfIABOmMoAcIJjAH58IwAPuTIAp/WOABRW5wAh8QgAtZ0qAG9+TQClGVEAtfmrAILf1gCW3WEAFjYCAMQ6nwCDoqEAcu1tADmNegCCuKkAazJcAEYnWwAANO0A0gB3APz0VQABWU0A4HGA"
|
|
),
|
|
scratchBuffer(
|
|
6675,
|
|
"QPsh+T8AAAAALUR0PgAAAICYRvg8AAAAYFHMeDsAAACAgxvwOQAAAEAgJXo4AAAAgCKC4zYAAAAAHfNpNThj7T7aD0k/Xph7P9oPyT9pN6wxaCEiM7QPFDNoIaIz2w9JP9sPSb/kyxZA5MsWwAAAAAAAAACA2w9JQNsPScAAAIA/AADAPwAAAADcz9E1AAAAAADAFT8="
|
|
),
|
|
scratchBuffer(6824, "BQ=="),
|
|
scratchBuffer(6836, "DQ=="),
|
|
scratchBuffer(6860, "DgAAAA8AAABYHAAAAAQ="),
|
|
scratchBuffer(6884, "AQ=="),
|
|
scratchBuffer(6899, "Cv////8="),
|
|
scratchBuffer(7156, "gCA="),
|
|
(global = {
|
|
Int8Array: Int8Array,
|
|
Int16Array: Int16Array,
|
|
Int32Array: Int32Array,
|
|
Uint8Array: Uint8Array,
|
|
Uint16Array: Uint16Array,
|
|
Uint32Array: Uint32Array,
|
|
Float32Array: Float32Array,
|
|
Float64Array: Float64Array,
|
|
NaN: NaN,
|
|
Infinity: 1 / 0,
|
|
Math: Math,
|
|
}),
|
|
(buffer = wasmMemory.buffer),
|
|
(m = (scratchBuffer = asmLibraryArg).memory),
|
|
(n = wasmTable),
|
|
(o = new global.Int8Array(buffer)),
|
|
(p = new global.Int16Array(buffer)),
|
|
(q = new global.Int32Array(buffer)),
|
|
(r = new global.Uint8Array(buffer)),
|
|
(s = new global.Uint16Array(buffer)),
|
|
(t = new global.Uint32Array(buffer)),
|
|
(u = new global.Float32Array(buffer)),
|
|
(v = new global.Float64Array(buffer)),
|
|
(w = global.Math.imul),
|
|
(x = global.Math.fround),
|
|
(y = global.Math.abs),
|
|
(z = global.Math.clz32),
|
|
(A = global.Math.min),
|
|
global.Math.max,
|
|
(C = global.Math.floor),
|
|
global.Math.ceil,
|
|
global.Math.sqrt,
|
|
scratchBuffer.abort,
|
|
global.NaN,
|
|
(H = global.Infinity),
|
|
(I = scratchBuffer.a),
|
|
(J = scratchBuffer.b),
|
|
(K = scratchBuffer.c),
|
|
(L = 5251744),
|
|
(M = 0),
|
|
(n[1] = function(a, Ln, Mn, Nn, On) {
|
|
(a |= 0), (Ln |= 0), (Mn |= 0), (Nn |= 0), (On |= 0);
|
|
var Wn,
|
|
ko,
|
|
lo,
|
|
oo,
|
|
qo,
|
|
ro,
|
|
so,
|
|
to,
|
|
uo,
|
|
vo,
|
|
wo,
|
|
xo,
|
|
yo,
|
|
zo,
|
|
Ao,
|
|
Bo,
|
|
Co,
|
|
Do,
|
|
Eo,
|
|
Fo,
|
|
Go,
|
|
Ho,
|
|
Io,
|
|
po,
|
|
Pn = 0,
|
|
Qn = x(0),
|
|
Rn = x(0),
|
|
Sn = 0,
|
|
Tn = x(0),
|
|
Un = x(0),
|
|
Vn = x(0),
|
|
Xn = x(0),
|
|
Yn = x(0),
|
|
Zn = x(0),
|
|
_n = x(0),
|
|
$n = x(0),
|
|
ao = x(0),
|
|
bo = x(0),
|
|
co = x(0),
|
|
eo = x(0),
|
|
fo = x(0),
|
|
go = x(0),
|
|
ho = x(0),
|
|
io = x(0),
|
|
jo = x(0),
|
|
mo = x(0),
|
|
no = x(0),
|
|
Jo =
|
|
(x(0), x(0), x(0), x(0), x(0), x(0), x(0), x(0), x(0), 0);
|
|
if (((L = po = (L - 32) | 0), 1 <= (0 | On)))
|
|
for (
|
|
Wn = q[(16 + ((q[(a + 308) >> 2] + (Ln << 5)) | 0)) >> 2],
|
|
Pn = (q[(a + 60) >> 2] + w(Wn, 24)) | 0,
|
|
Ln = ((ko = q[(Pn + 8) >> 2]) + -1) | 0,
|
|
xo = ((qo = q[(Pn + 4) >> 2]) + -1) | 0,
|
|
yo = uo =
|
|
((Wn = q[(q[(a + 152) >> 2] + (Wn << 2)) >> 2]) +
|
|
(ko << 3)) |
|
|
0,
|
|
zo = vo =
|
|
(Wn + ((to = w(qo, (lo = (ko + 1) | 0))) << 3)) | 0,
|
|
Ao = wo = (Wn + ((ko + to) << 3)) | 0,
|
|
Io = q[(Pn + 12) >> 2],
|
|
ro = x(0 | qo),
|
|
so = x(0 | ko),
|
|
a = 0;
|
|
(Vn = u[(4 + (Pn = ((oo = a << 3) + Mn) | 0)) >> 2]),
|
|
(Rn = x(Vn * ro)),
|
|
(Xn = u[Pn >> 2]),
|
|
(Qn = x(Xn * so)),
|
|
(Pn = Vn >= x(1)),
|
|
(Rn = !((Vn < x(0)) ^ 1) || Pn | (Xn >= x(1)) | (Xn < x(0)) ?
|
|
(Jo ||
|
|
((ao = u[(4 + Ao) >> 2]),
|
|
(Bo = u[(Wn + 4) >> 2]),
|
|
(Yn = x(ao - Bo)),
|
|
(Co = u[(4 + yo) >> 2]),
|
|
(Do = u[(4 + zo) >> 2]),
|
|
(Zn = x(Co - Do)),
|
|
(bo = x(x(Yn - Zn) * x(0.5))),
|
|
(Eo = u[wo >> 2]),
|
|
(Fo = u[Wn >> 2]),
|
|
(_n = x(Eo - Fo)),
|
|
(Go = u[uo >> 2]),
|
|
(Ho = u[vo >> 2]),
|
|
($n = x(Go - Ho)),
|
|
(co = x(x(_n - $n) * x(0.5))),
|
|
(Zn = x(x(Zn + Yn) * x(0.5))),
|
|
($n = x(x($n + _n) * x(0.5))),
|
|
(Jo = 1),
|
|
(Yn = x(
|
|
x(x(x(x(Bo + Co) + Do) + ao) * x(0.25)) -
|
|
x(Yn * x(0.5))
|
|
)),
|
|
(_n = x(
|
|
x(x(x(x(Fo + Go) + Ho) + Eo) * x(0.25)) -
|
|
x(_n * x(0.5))
|
|
))),
|
|
((Vn < x(3)) ^ 1) |
|
|
((Xn > x(-2)) ^ 1) |
|
|
(((Xn < x(3)) ^ 1) | ((Vn > x(-2)) ^ 1)) ?
|
|
((u[(Nn + oo) >> 2] =
|
|
x(Vn * co) + x(x(Xn * $n) + _n)),
|
|
(Qn = x(Vn * bo)),
|
|
x(x(Xn * Zn) + Yn)) :
|
|
(Xn <= x(0) ?
|
|
Vn <= x(0) ?
|
|
((Un = x(x(Vn + x(2)) * x(0.5))),
|
|
(Tn = x(x(Xn + x(2)) * x(0.5))),
|
|
(Qn = x(bo + bo)),
|
|
(mo = x(Yn - Qn)),
|
|
(Rn = x(co + co)),
|
|
(no = x(_n - Rn)),
|
|
(io = x(Yn - x(Zn + Zn))),
|
|
(eo = x(io - Qn)),
|
|
(jo = x(_n - x($n + $n))),
|
|
(fo = x(jo - Rn)),
|
|
(go = u[(Wn + 4) >> 2]),
|
|
(ho = u[Wn >> 2])) :
|
|
Pn ?
|
|
((Qn = x(bo * x(3))),
|
|
(Rn = x(Yn - x(Zn + Zn))),
|
|
(io = x(Qn + Rn)),
|
|
(eo = x(co * x(3))),
|
|
(fo = x(_n - x($n + $n))),
|
|
(jo = x(eo + fo)),
|
|
(Un = x(x(Vn + x(-1)) * x(0.5))),
|
|
(Tn = x(x(Xn + x(2)) * x(0.5))),
|
|
(go = x(Qn + Yn)),
|
|
(ho = x(eo + _n)),
|
|
(eo = x(bo + Rn)),
|
|
(fo = x(co + fo)),
|
|
(mo = u[(4 + zo) >> 2]),
|
|
(no = u[vo >> 2])) :
|
|
((Qn = x(Yn - x(Zn + Zn))),
|
|
(Pn = xo),
|
|
(Sn =
|
|
x(y(Rn)) < x(2147483648) ?
|
|
~~Rn :
|
|
-2147483648),
|
|
(Un = x(
|
|
0 |
|
|
(Pn =
|
|
(0 | Sn) == (0 | qo) ? Pn : Sn)
|
|
)),
|
|
(Tn = x(Un / ro)),
|
|
(eo = x(x(Tn * bo) + Qn)),
|
|
(ao = x(Tn * co)),
|
|
(Tn = x(_n - x($n + $n))),
|
|
(fo = x(ao + Tn)),
|
|
(Vn = x(
|
|
x(0 | (Sn = (Pn + 1) | 0)) / ro
|
|
)),
|
|
(io = x(x(Vn * bo) + Qn)),
|
|
(jo = x(x(Vn * co) + Tn)),
|
|
(Tn = x(x(Xn + x(2)) * x(0.5))),
|
|
(Un = x(Rn - Un)),
|
|
(Pn = (Wn + (w(Pn, lo) << 3)) | 0),
|
|
(mo = u[(Pn + 4) >> 2]),
|
|
(no = u[Pn >> 2]),
|
|
(Pn = (Wn + (w(Sn, lo) << 3)) | 0),
|
|
(go = u[(Pn + 4) >> 2]),
|
|
(ho = u[Pn >> 2])) :
|
|
Xn >= x(1) ?
|
|
Vn <= x(0) ?
|
|
((Un = x(x(Vn + x(2)) * x(0.5))),
|
|
(Tn = x(x(Xn + x(-1)) * x(0.5))),
|
|
(Qn = x(bo + bo)),
|
|
(eo = x(x(Zn + Yn) - Qn)),
|
|
(Rn = x(co + co)),
|
|
(fo = x(x($n + _n) - Rn)),
|
|
(go = x(x(Zn * x(3)) + Yn)),
|
|
(mo = x(go - Qn)),
|
|
(ho = x(x($n * x(3)) + _n)),
|
|
(no = x(ho - Rn)),
|
|
(io = u[(4 + yo) >> 2]),
|
|
(jo = u[uo >> 2])) :
|
|
Pn ?
|
|
((Qn = x(bo * x(3))),
|
|
(io = x(Qn + x(Zn + Yn))),
|
|
(Rn = x(co * x(3))),
|
|
(jo = x(Rn + x($n + _n))),
|
|
(ao = Qn),
|
|
(Qn = x(x(Zn * x(3)) + Yn)),
|
|
(go = x(ao + Qn)),
|
|
(ao = Rn),
|
|
(Rn = x(x($n * x(3)) + _n)),
|
|
(ho = x(ao + Rn)),
|
|
(Un = x(x(Vn + x(-1)) * x(0.5))),
|
|
(Tn = x(x(Xn + x(-1)) * x(0.5))),
|
|
(mo = x(bo + Qn)),
|
|
(no = x(co + Rn)),
|
|
(eo = u[(4 + Ao) >> 2]),
|
|
(fo = u[wo >> 2])) :
|
|
((Qn = x(x(Zn * x(3)) + Yn)),
|
|
(Pn = xo),
|
|
(Sn =
|
|
x(y(Rn)) < x(2147483648) ?
|
|
~~Rn :
|
|
-2147483648),
|
|
(Un = x(
|
|
0 |
|
|
(Pn =
|
|
(0 | Sn) == (0 | qo) ? Pn : Sn)
|
|
)),
|
|
(Tn = x(Un / ro)),
|
|
(mo = x(x(Tn * bo) + Qn)),
|
|
(ao = x(Tn * co)),
|
|
(Tn = x(x($n * x(3)) + _n)),
|
|
(no = x(ao + Tn)),
|
|
(Vn = x(
|
|
x(0 | (Sn = (Pn + 1) | 0)) / ro
|
|
)),
|
|
(go = x(x(Vn * bo) + Qn)),
|
|
(ho = x(x(Vn * co) + Tn)),
|
|
(Tn = x(x(Xn + x(-1)) * x(0.5))),
|
|
(Un = x(Rn - Un)),
|
|
(Pn =
|
|
(Wn + ((w(Pn, lo) + ko) << 3)) | 0),
|
|
(eo = u[(Pn + 4) >> 2]),
|
|
(fo = u[Pn >> 2]),
|
|
(Pn =
|
|
(Wn + ((w(Sn, lo) + ko) << 3)) | 0),
|
|
(io = u[(Pn + 4) >> 2]),
|
|
(jo = u[Pn >> 2])) :
|
|
Vn <= x(0) ?
|
|
((Un = x(x(Vn + x(2)) * x(0.5))),
|
|
(Pn = Ln),
|
|
(Sn =
|
|
x(y((Rn = Qn))) < x(2147483648) ?
|
|
~~Qn :
|
|
-2147483648),
|
|
(Qn = x(
|
|
0 |
|
|
(Pn = (0 | Sn) == (0 | ko) ? Pn : Sn)
|
|
)),
|
|
(Tn = x(Rn - Qn)),
|
|
(Qn = x(Qn / so)),
|
|
(Rn = x(bo + bo)),
|
|
(eo = x(x(x(Qn * Zn) + Yn) - Rn)),
|
|
(ao = x(x(Qn * $n) + _n)),
|
|
(Qn = x(co + co)),
|
|
(fo = x(ao - Qn)),
|
|
(Vn = x(x(0 | (Sn = (Pn + 1) | 0)) / so)),
|
|
(mo = x(x(x(Vn * Zn) + Yn) - Rn)),
|
|
(no = x(x(x(Vn * $n) + _n) - Qn)),
|
|
(io =
|
|
u[
|
|
(4 + (Pn = (Wn + (Pn << 3)) | 0)) >> 2
|
|
]),
|
|
(jo = u[Pn >> 2]),
|
|
(go =
|
|
u[
|
|
(4 + (Pn = (Wn + (Sn << 3)) | 0)) >> 2
|
|
]),
|
|
(ho = u[Pn >> 2])) :
|
|
Pn ?
|
|
((ao = Rn = x(bo * x(3))),
|
|
(Pn = Ln),
|
|
(Sn =
|
|
x(y(Qn)) < x(2147483648) ?
|
|
~~Qn :
|
|
-2147483648),
|
|
(Tn = x(
|
|
0 |
|
|
(Pn = (0 | Sn) == (0 | ko) ? Pn : Sn)
|
|
)),
|
|
(Un = x(Tn / so)),
|
|
(io = x(ao + x(x(Un * Zn) + Yn))),
|
|
(Xn = x(co * x(3))),
|
|
(jo = x(Xn + x(x(Un * $n) + _n))),
|
|
(ao = Rn),
|
|
(Rn = x(x(0 | (Sn = (Pn + 1) | 0)) / so)),
|
|
(go = x(ao + x(x(Rn * Zn) + Yn))),
|
|
(ho = x(Xn + x(x(Rn * $n) + _n))),
|
|
(Un = x(x(Vn + x(-1)) * x(0.5))),
|
|
(Tn = x(Qn - Tn)),
|
|
(eo =
|
|
u[
|
|
(4 +
|
|
(Pn =
|
|
(Wn + ((Pn + to) << 3)) | 0)) >>
|
|
2
|
|
]),
|
|
(fo = u[Pn >> 2]),
|
|
(mo =
|
|
u[
|
|
(4 +
|
|
(Pn =
|
|
(Wn + ((Sn + to) << 3)) | 0)) >>
|
|
2
|
|
]),
|
|
(no = u[Pn >> 2])) :
|
|
((v[(16 + po) >> 3] = Vn),
|
|
(q[po >> 2] = a),
|
|
(v[(8 + po) >> 3] = Xn),
|
|
Y(4, 1107, po)),
|
|
x(Tn + Un) <= x(1) ?
|
|
((u[(Nn + oo) >> 2] =
|
|
x(fo + x(x(no - fo) * Tn)) +
|
|
x(x(jo - fo) * Un)),
|
|
(Qn = x(eo + x(x(mo - eo) * Tn))),
|
|
x(x(io - eo) * Un)) :
|
|
((Qn = x(x(1) - Tn)),
|
|
(Rn = x(x(1) - Un)),
|
|
(u[(Nn + oo) >> 2] =
|
|
x(ho + x(x(jo - ho) * Qn)) +
|
|
x(x(no - ho) * Rn)),
|
|
(Qn = x(go + x(x(io - go) * Qn))),
|
|
x(x(mo - go) * Rn)))) :
|
|
((Pn =
|
|
x(y((ao = Rn))) < x(2147483648) ?
|
|
~~Rn :
|
|
-2147483648),
|
|
(Un = x(ao - x(0 | Pn))),
|
|
(Sn =
|
|
x(y((Rn = Qn))) < x(2147483648) ?
|
|
~~Qn :
|
|
-2147483648),
|
|
(Tn = x(Rn - x(0 | Sn))),
|
|
(Pn = (Sn + w(Pn, lo)) | 0),
|
|
Io ?
|
|
((Qn = x(x(1) - Un)),
|
|
(Rn = x(x(1) - Tn)),
|
|
(Sn = (Wn + (Pn << 3)) | 0),
|
|
(Pn = (Wn + ((Pn + lo) << 3)) | 0),
|
|
(u[(Nn + oo) >> 2] =
|
|
x(
|
|
x(
|
|
x(Qn * x(Rn * u[Sn >> 2])) +
|
|
x(Qn * x(Tn * u[(Sn + 8) >> 2]))
|
|
) + x(Un * x(Rn * u[Pn >> 2]))
|
|
) + x(Un * x(Tn * u[(Pn + 8) >> 2]))),
|
|
(Qn = x(
|
|
x(
|
|
x(Qn * x(Rn * u[(Sn + 4) >> 2])) +
|
|
x(Qn * x(Tn * u[(Sn + 12) >> 2]))
|
|
) + x(Un * x(Rn * u[(Pn + 4) >> 2]))
|
|
)),
|
|
x(Un * x(Tn * u[(Pn + 12) >> 2]))) :
|
|
x(Tn + Un) <= x(1) ?
|
|
((Qn = x(x(x(1) - Tn) - Un)),
|
|
(Sn = (Wn + (Pn << 3)) | 0),
|
|
(Pn = (Wn + ((Pn + lo) << 3)) | 0),
|
|
(u[(Nn + oo) >> 2] =
|
|
x(
|
|
x(Qn * u[Sn >> 2]) +
|
|
x(Tn * u[(Sn + 8) >> 2])
|
|
) + x(Un * u[Pn >> 2])),
|
|
(Qn = x(
|
|
x(Qn * u[(Sn + 4) >> 2]) +
|
|
x(Tn * u[(Sn + 12) >> 2])
|
|
)),
|
|
x(Un * u[(Pn + 4) >> 2])) :
|
|
((Qn = x(x(Tn + x(-1)) + Un)),
|
|
(Sn = (Wn + ((Pn + lo) << 3)) | 0),
|
|
(Rn = x(x(1) - Tn)),
|
|
(Vn = x(x(1) - Un)),
|
|
(Pn = (Wn + (Pn << 3)) | 0),
|
|
(u[(Nn + oo) >> 2] =
|
|
x(
|
|
x(Qn * u[(Sn + 8) >> 2]) +
|
|
x(Rn * u[Sn >> 2])
|
|
) + x(Vn * u[(Pn + 8) >> 2])),
|
|
(Qn = x(
|
|
x(Qn * u[(Sn + 12) >> 2]) +
|
|
x(Rn * u[(Sn + 4) >> 2])
|
|
)),
|
|
x(Vn * u[(Pn + 12) >> 2])))),
|
|
(u[(4 + ((Nn + oo) | 0)) >> 2] = Qn + Rn),
|
|
(0 | On) != (0 | (a = (a + 1) | 0));
|
|
|
|
);
|
|
L = (32 + po) | 0;
|
|
}),
|
|
(n[2] = function(a, mh) {
|
|
(a |= 0), (mh |= 0);
|
|
var Dh = 0,
|
|
Eh = 0,
|
|
Fh = 0,
|
|
Gh = 0,
|
|
Hh = 0,
|
|
Ih = x(0),
|
|
Jh = 0,
|
|
Kh = 0,
|
|
Mh = (x(0), 0),
|
|
Nh = 0,
|
|
Gh = q[(a + 320) >> 2],
|
|
Dh = q[(a + 316) >> 2],
|
|
Hh = q[(a + 308) >> 2]; -
|
|
1 == (0 | (Eh = q[(8 + (Fh = (Hh + (mh << 5)) | 0)) >> 2])) ?
|
|
((q[((Nh = Dh) + (Dh = mh << 2)) >> 2] =
|
|
q[(q[(a + 148) >> 2] + (q[(Fh + 16) >> 2] << 2)) >> 2]),
|
|
(q[(Dh + Gh) >> 2] = 1065353216)) :
|
|
((Jh = q[(Fh + 16) >> 2]),
|
|
(Kh = q[(q[(a + 152) >> 2] + (Jh << 2)) >> 2]),
|
|
n[q[(24 + ((Hh + (Eh << 5)) | 0)) >> 2]](
|
|
a,
|
|
Eh,
|
|
Kh,
|
|
Kh,
|
|
q[(16 + ((q[(a + 60) >> 2] + w(Jh, 24)) | 0)) >> 2]
|
|
),
|
|
(Ih =
|
|
u[(q[(a + 148) >> 2] + (q[(Fh + 16) >> 2] << 2)) >> 2]),
|
|
(Fh = q[(Fh + 8) >> 2] << 2),
|
|
(u[((Eh = mh << 2) + Dh) >> 2] = Ih * u[(Fh + Dh) >> 2]),
|
|
(q[(Eh + Gh) >> 2] = q[(Fh + Gh) >> 2])),
|
|
4 <= r[(q[a >> 2] + 4) | 0] &&
|
|
((Gh = mh << 2),
|
|
(Dh = (q[(a + 308) >> 2] + (mh << 5)) | 0),
|
|
(Eh = q[(Dh + 16) >> 2] << 2),
|
|
(Fh = q[(a + 328) >> 2]),
|
|
(mh = q[(a + 324) >> 2]), -1 == (0 | (Hh = q[(Dh + 8) >> 2])) ?
|
|
((Hh = q[(a + 156) >> 2]),
|
|
(q[((Dh = Gh << 2) + mh) >> 2] =
|
|
q[(Hh + (Eh <<= 2)) >> 2]),
|
|
(q[((Jh = 4 | Dh) + mh) >> 2] =
|
|
q[((Kh = 4 | Eh) + Hh) >> 2]),
|
|
(q[((Mh = 8 | Dh) + mh) >> 2] =
|
|
q[(Hh + (Nh = 8 | Eh)) >> 2]),
|
|
(q[(mh + ((Gh |= 3) << 2)) >> 2] = 1065353216),
|
|
(a = q[(a + 160) >> 2]),
|
|
(q[(Dh + Fh) >> 2] = q[(a + Eh) >> 2]),
|
|
(q[(Fh + Jh) >> 2] = q[(a + Kh) >> 2]),
|
|
(q[(Fh + Mh) >> 2] = q[(a + Nh) >> 2])) :
|
|
((Eh = ((Kh = Eh << 2) + q[(a + 156) >> 2]) | 0),
|
|
(u[(Dh = ((Jh = Gh << 2) + mh) | 0) >> 2] =
|
|
u[Eh >> 2] *
|
|
u[(Hh = ((Mh = Hh << 4) + mh) | 0) >> 2]),
|
|
(u[(Dh + 4) >> 2] =
|
|
u[(Eh + 4) >> 2] * u[(Hh + 4) >> 2]),
|
|
(u[(Dh + 8) >> 2] =
|
|
u[(Eh + 8) >> 2] * u[(Hh + 8) >> 2]),
|
|
(q[(mh + ((Gh |= 3) << 2)) >> 2] = 1065353216),
|
|
(a = (Kh + q[(a + 160) >> 2]) | 0),
|
|
(Nh = u[a >> 2]),
|
|
(Ih = u[(Dh = (Fh + Mh) | 0) >> 2]),
|
|
(u[(mh = (Fh + Jh) | 0) >> 2] =
|
|
x(Nh + Ih) - x(Nh * Ih)),
|
|
(Nh = u[(a + 4) >> 2]),
|
|
(Ih = u[(Dh + 4) >> 2]),
|
|
(u[(mh + 4) >> 2] = x(Nh + Ih) - x(Nh * Ih)),
|
|
(Nh = u[(a + 8) >> 2]),
|
|
(Ih = u[(Dh + 8) >> 2]),
|
|
(u[(mh + 8) >> 2] = x(Nh + Ih) - x(Nh * Ih))),
|
|
(q[(Fh + (Gh << 2)) >> 2] = 1065353216));
|
|
}),
|
|
(n[3] = function(a, Sm, un, xn, yn) {
|
|
(a |= 0), (Sm |= 0), (un |= 0), (xn |= 0), (yn |= 0);
|
|
var Dn,
|
|
En,
|
|
Fn,
|
|
Hn,
|
|
In,
|
|
zn = 0,
|
|
zn =
|
|
(x(0),
|
|
x(0),
|
|
x(0),
|
|
x(0),
|
|
x(0),
|
|
x(0),
|
|
x(0),
|
|
x(0),
|
|
(Sm =
|
|
q[(16 + ((q[(a + 308) >> 2] + (Sm << 5)) | 0)) >> 2]) <<
|
|
2),
|
|
Bn = (function(a) {
|
|
var El,
|
|
Hl,
|
|
Fl,
|
|
Gl,
|
|
Dl = x(0);
|
|
(L = Fl = (L - 16) | 0), j(a);
|
|
a: if (
|
|
(El = 2147483647 & (Gl = b[0])) >>> 0 <=
|
|
1061752794
|
|
)
|
|
(Dl = x(1)), El >>> 0 < 964689920 || (Dl = ba(+a));
|
|
else
|
|
if (El >>> 0 <= 1081824209)
|
|
(Hl = +a),
|
|
(Dl =
|
|
1075235812 <= El >>> 0 ?
|
|
x(-ba(
|
|
((0 | Gl) < 0 ?
|
|
3.141592653589793 :
|
|
-3.141592653589793) + Hl
|
|
)) :
|
|
aa(
|
|
(0 | Gl) <= -1 ?
|
|
1.5707963267948966 + Hl :
|
|
1.5707963267948966 - Hl
|
|
));
|
|
else if (El >>> 0 <= 1088565717)
|
|
Dl =
|
|
1085271520 <= El >>> 0 ?
|
|
ba(+a +
|
|
((0 | Gl) < 0 ?
|
|
6.283185307179586 :
|
|
-6.283185307179586)
|
|
) :
|
|
aa(
|
|
(0 | Gl) <= -1 ?
|
|
-4.71238898038469 - +a :
|
|
+a - 4.71238898038469
|
|
);
|
|
else if (((Dl = x(a - a)), !(2139095040 <= El >>> 0)))
|
|
if ((El = 3 & Da(a, (8 + Fl) | 0)) >>> 0 <= 2) {
|
|
switch ((El - 1) | 0) {
|
|
default: Dl = ba(v[(8 + Fl) >> 3]);
|
|
break a;
|
|
case 0:
|
|
Dl = aa(-v[(8 + Fl) >> 3]);
|
|
break a;
|
|
case 1:
|
|
}
|
|
Dl = x(-ba(v[(8 + Fl) >> 3]));
|
|
} else Dl = aa(v[(8 + Fl) >> 3]);
|
|
return (L = (16 + Fl) | 0), Dl;
|
|
})(
|
|
(An = x(
|
|
x(
|
|
x(
|
|
u[
|
|
(4 + ((q[(a + 168) >> 2] + w(Sm, 12)) | 0)) >> 2
|
|
] + u[(zn + q[(a + 284) >> 2]) >> 2]
|
|
) * x(3.1415927410125732)
|
|
) / x(180)
|
|
))
|
|
),
|
|
Cn = u[(zn + q[(a + 272) >> 2]) >> 2],
|
|
Gn = q[(zn + q[(a + 292) >> 2]) >> 2],
|
|
An = (function(a) {
|
|
var Vk,
|
|
Al,
|
|
Cl,
|
|
Bl = 0;
|
|
(L = Al = (L - 16) | 0), j(a);
|
|
a: if (
|
|
(Vk = 2147483647 & (Cl = b[0])) >>> 0 <=
|
|
1061752794
|
|
)
|
|
Vk >>> 0 < 964689920 || (a = aa(+a));
|
|
else
|
|
if (Vk >>> 0 <= 1081824209)
|
|
(Bl = +a),
|
|
(a =
|
|
Vk >>> 0 <= 1075235811 ?
|
|
(0 | Cl) <= -1 ?
|
|
x(-ba(Bl + 1.5707963267948966)) :
|
|
ba(Bl + -1.5707963267948966) :
|
|
aa(-(
|
|
((0 | Cl) < 0 ?
|
|
3.141592653589793 :
|
|
-3.141592653589793) + Bl
|
|
)));
|
|
else if (Vk >>> 0 <= 1088565717)
|
|
(Bl = +a),
|
|
(a =
|
|
Vk >>> 0 <= 1085271519 ?
|
|
(0 | Cl) <= -1 ?
|
|
ba(Bl + 4.71238898038469) :
|
|
x(-ba(Bl + -4.71238898038469)) :
|
|
aa(
|
|
((0 | Cl) < 0 ?
|
|
6.283185307179586 :
|
|
-6.283185307179586) + Bl
|
|
));
|
|
else if (2139095040 <= Vk >>> 0) a = x(a - a);
|
|
else if ((Vk = 3 & Da(a, (8 + Al) | 0)) >>> 0 <= 2) {
|
|
switch ((Vk - 1) | 0) {
|
|
default: a = aa(v[(8 + Al) >> 3]);
|
|
break a;
|
|
case 0:
|
|
a = ba(v[(8 + Al) >> 3]);
|
|
break a;
|
|
case 1:
|
|
}
|
|
a = aa(-v[(8 + Al) >> 3]);
|
|
} else a = x(-ba(v[(8 + Al) >> 3]));
|
|
return (L = (16 + Al) | 0), a;
|
|
})(An);
|
|
if ((Sm = 0) < (0 | yn))
|
|
for (
|
|
Bn = x(Cn * Bn),
|
|
En = x(Gn ? -1 : 1),
|
|
Hn = x(Bn * En),
|
|
Dn = q[(zn + q[(a + 288) >> 2]) >> 2] ? x(-1) : x(1),
|
|
In = x(x(Cn * An) * Dn),
|
|
Bn = x(Bn * Dn),
|
|
Cn = x(x(Cn * x(-An)) * En),
|
|
An = u[(zn + q[(a + 280) >> 2]) >> 2],
|
|
En = u[(zn + q[(a + 276) >> 2]) >> 2];
|
|
(zn = ((a = Sm << 3) + xn) | 0),
|
|
(Dn = u[(a = (a + un) | 0) >> 2]),
|
|
(Fn = u[(a + 4) >> 2]),
|
|
(u[(zn + 4) >> 2] = An + x(x(In * Dn) + x(Hn * Fn))),
|
|
(u[zn >> 2] = En + x(x(Bn * Dn) + x(Cn * Fn))),
|
|
(0 | yn) != (0 | (Sm = (Sm + 1) | 0));
|
|
|
|
);
|
|
}),
|
|
(n[4] = function(a, mh) {
|
|
(a |= 0), (mh |= 0);
|
|
var yh,
|
|
zh,
|
|
Ah,
|
|
Bh,
|
|
Ch,
|
|
nh,
|
|
oh = 0,
|
|
ph = 0,
|
|
qh = 0,
|
|
rh = x(0),
|
|
sh = 0,
|
|
th = 0,
|
|
uh = x(0),
|
|
vh = 0,
|
|
wh = 0,
|
|
xh = 0;
|
|
if (
|
|
(x(0),
|
|
x(0),
|
|
x(0),
|
|
x(0),
|
|
(L = nh = (L + -64) | 0),
|
|
(vh = q[(a + 320) >> 2]),
|
|
(wh = q[(a + 316) >> 2]),
|
|
(ph = q[(a + 308) >> 2]), -1 ==
|
|
(0 | (sh = q[(8 + (qh = (ph + (mh << 5)) | 0)) >> 2])))
|
|
)
|
|
(oh = q[(qh + 16) >> 2] << 2),
|
|
(q[((ph = mh << 2) + wh) >> 2] =
|
|
q[(oh + q[(a + 268) >> 2]) >> 2]),
|
|
(q[(ph + vh) >> 2] = q[(oh + q[(a + 272) >> 2]) >> 2]);
|
|
else {
|
|
(oh = q[(qh + 16) >> 2] << 2),
|
|
(xh = q[(oh + q[(a + 276) >> 2]) >> 2]),
|
|
(q[(24 + nh) >> 2] = xh),
|
|
(oh = q[(oh + q[(a + 280) >> 2]) >> 2]),
|
|
(q[(28 + nh) >> 2] = oh),
|
|
(q[(16 + nh) >> 2] = 0),
|
|
(zh =
|
|
1 == q[(12 + (th = (ph + (sh << 5)) | 0)) >> 2] ?
|
|
x(-10) :
|
|
x(-0.10000000149011612)),
|
|
(u[(20 + nh) >> 2] = zh),
|
|
(q[(60 + nh) >> 2] = oh),
|
|
(q[(56 + nh) >> 2] = xh),
|
|
n[q[(th + 24) >> 2]](
|
|
a,
|
|
sh,
|
|
(56 + nh) | 0,
|
|
(48 + nh) | 0,
|
|
1
|
|
),
|
|
(rh = x(1)),
|
|
(ph = 9);
|
|
b: {
|
|
for (;;) {
|
|
if (
|
|
((oh = ph),
|
|
(uh = x(rh * x(0))),
|
|
(u[(32 + nh) >> 2] = uh + u[(56 + nh) >> 2]),
|
|
(yh = x(zh * rh)),
|
|
(u[(36 + nh) >> 2] = yh + u[(60 + nh) >> 2]),
|
|
n[q[(th + 24) >> 2]](
|
|
a,
|
|
sh,
|
|
(32 + nh) | 0,
|
|
(40 + nh) | 0,
|
|
1
|
|
),
|
|
(Ah = x(u[(44 + nh) >> 2] - u[(52 + nh) >> 2])),
|
|
(u[(44 + nh) >> 2] = Ah),
|
|
(Bh = x(u[(40 + nh) >> 2] - u[(48 + nh) >> 2])),
|
|
(u[(40 + nh) >> 2] = Bh),
|
|
Ah != x(0) || Bh != x(0))
|
|
) {
|
|
(ph = q[(44 + nh) >> 2]),
|
|
(q[(8 + nh) >> 2] = q[(40 + nh) >> 2]),
|
|
(q[(12 + nh) >> 2] = ph);
|
|
break b;
|
|
}
|
|
if (
|
|
((u[(32 + nh) >> 2] = u[(56 + nh) >> 2] - uh),
|
|
(u[(36 + nh) >> 2] = u[(60 + nh) >> 2] - yh),
|
|
n[q[(th + 24) >> 2]](
|
|
a,
|
|
sh,
|
|
(32 + nh) | 0,
|
|
(40 + nh) | 0,
|
|
1
|
|
),
|
|
(uh = x(u[(40 + nh) >> 2] - u[(48 + nh) >> 2])),
|
|
(u[(40 + nh) >> 2] = uh),
|
|
(yh = x(u[(44 + nh) >> 2] - u[(52 + nh) >> 2])),
|
|
(u[(44 + nh) >> 2] = yh) != x(0) || uh != x(0))
|
|
) {
|
|
(u[(12 + nh) >> 2] = -yh), (u[(8 + nh) >> 2] = -uh);
|
|
break b;
|
|
}
|
|
if (
|
|
((ph = (oh + -1) | 0),
|
|
(rh = x(rh * x(0.10000000149011612))), !oh)
|
|
)
|
|
break;
|
|
}
|
|
Y(3, 1311, 0);
|
|
}
|
|
(rh = (function(a, ji) {
|
|
var ki = x(0);
|
|
if (
|
|
(ki = x(
|
|
Ba(u[(4 + a) >> 2], u[a >> 2]) -
|
|
Ba(u[(4 + ji) >> 2], u[ji >> 2])
|
|
)) < x(-3.1415927410125732)
|
|
)
|
|
for (;
|
|
(ki = x(ki + x(6.2831854820251465))) <
|
|
x(-3.1415927410125732);
|
|
|
|
);
|
|
if (ki > x(3.1415927410125732))
|
|
for (;
|
|
(ki = x(ki + x(-6.2831854820251465))) >
|
|
x(3.1415927410125732);
|
|
|
|
);
|
|
return ki;
|
|
})((16 + nh) | 0, (8 + nh) | 0)),
|
|
n[q[(th + 24) >> 2]](
|
|
a,
|
|
q[(qh + 8) >> 2],
|
|
(24 + nh) | 0,
|
|
(24 + nh) | 0,
|
|
1
|
|
),
|
|
(ph = q[(qh + 16) >> 2] << 2),
|
|
(q[(ph + q[(a + 276) >> 2]) >> 2] = q[(24 + nh) >> 2]),
|
|
(q[(ph + q[(a + 280) >> 2]) >> 2] = q[(28 + nh) >> 2]),
|
|
(oh = (ph + q[(a + 284) >> 2]) | 0),
|
|
(u[oh >> 2] =
|
|
u[oh >> 2] +
|
|
x(x(rh * x(-180)) / x(3.1415927410125732))),
|
|
(qh = q[(qh + 8) >> 2] << 2),
|
|
(u[((oh = mh << 2) + wh) >> 2] =
|
|
u[(ph + q[(a + 268) >> 2]) >> 2] * u[(qh + wh) >> 2]),
|
|
(ph = (ph + q[(a + 272) >> 2]) | 0),
|
|
(rh = x(u[ph >> 2] * u[(qh + vh) >> 2])),
|
|
(u[(oh + vh) >> 2] = rh),
|
|
(u[ph >> 2] = rh);
|
|
}
|
|
4 <= r[(q[a >> 2] + 4) | 0] &&
|
|
((oh = mh << 2),
|
|
(qh = (q[(a + 308) >> 2] + (mh << 5)) | 0),
|
|
(sh = q[(qh + 16) >> 2] << 2),
|
|
(ph = q[(a + 328) >> 2]),
|
|
(mh = q[(a + 324) >> 2]), -1 == (0 | (th = q[(qh + 8) >> 2])) ?
|
|
((th = q[(a + 296) >> 2]),
|
|
(q[((qh = oh << 2) + mh) >> 2] =
|
|
q[(th + (sh <<= 2)) >> 2]),
|
|
(q[((vh = 4 | qh) + mh) >> 2] =
|
|
q[((wh = 4 | sh) + th) >> 2]),
|
|
(q[((xh = 8 | qh) + mh) >> 2] =
|
|
q[(th + (Ch = 8 | sh)) >> 2]),
|
|
(q[(mh + ((oh |= 3) << 2)) >> 2] = 1065353216),
|
|
(a = q[(a + 300) >> 2]),
|
|
(q[(ph + qh) >> 2] = q[(a + sh) >> 2]),
|
|
(q[(ph + vh) >> 2] = q[(a + wh) >> 2]),
|
|
(q[(ph + xh) >> 2] = q[(a + Ch) >> 2])) :
|
|
((sh = ((wh = sh << 2) + q[(a + 296) >> 2]) | 0),
|
|
(u[(qh = ((vh = oh << 2) + mh) | 0) >> 2] =
|
|
u[sh >> 2] *
|
|
u[(th = ((xh = th << 4) + mh) | 0) >> 2]),
|
|
(u[(qh + 4) >> 2] =
|
|
u[(sh + 4) >> 2] * u[(th + 4) >> 2]),
|
|
(u[(qh + 8) >> 2] =
|
|
u[(sh + 8) >> 2] * u[(th + 8) >> 2]),
|
|
(q[(mh + ((oh |= 3) << 2)) >> 2] = 1065353216),
|
|
(a = (wh + q[(a + 300) >> 2]) | 0),
|
|
(rh = u[a >> 2]),
|
|
(uh = u[(qh = (ph + xh) | 0) >> 2]),
|
|
(u[(mh = (ph + vh) | 0) >> 2] =
|
|
x(rh + uh) - x(rh * uh)),
|
|
(rh = u[(a + 4) >> 2]),
|
|
(uh = u[(qh + 4) >> 2]),
|
|
(u[(mh + 4) >> 2] = x(rh + uh) - x(rh * uh)),
|
|
(rh = u[(a + 8) >> 2]),
|
|
(uh = u[(qh + 8) >> 2]),
|
|
(u[(mh + 8) >> 2] = x(rh + uh) - x(rh * uh))),
|
|
(q[(ph + (oh << 2)) >> 2] = 1065353216)),
|
|
(L = (64 + nh) | 0);
|
|
}),
|
|
(n[5] = function(a, Vk) {
|
|
return (
|
|
(a |= 0),
|
|
(Vk |= 0),
|
|
x(0),
|
|
x(0),
|
|
0 | ((a = u[a >> 2]) < (Vk = u[Vk >> 2]) ? -1 : Vk < a)
|
|
);
|
|
}),
|
|
(n[6] = function(a, vj, xj, yj) {
|
|
(a |= 0), (vj |= 0), (xj |= 0), (yj |= 0);
|
|
var Vj = 0,
|
|
Wj = 0,
|
|
Xj = x(0),
|
|
Yj = 0,
|
|
Zj = 0,
|
|
_j = 0,
|
|
$j = 0,
|
|
ak = 0;
|
|
if (1 <= (0 | (Yj = q[(a + 8) >> 2])))
|
|
for (
|
|
_j = q[(a + 12) >> 2], Zj = q[(a + 20) >> 2];
|
|
(u[((Wj = Vj << 2) + _j) >> 2] =
|
|
u[(vj + Wj) >> 2] * u[(Wj + Zj) >> 2]),
|
|
(0 | (Vj = (Vj + 1) | 0)) < (0 | Yj);
|
|
|
|
);
|
|
if (!((0 | (Yj = q[a >> 2])) < 1))
|
|
if (((_j = q[(a + 4) >> 2]), yj))
|
|
for (Wj = vj = 0;;) {
|
|
if (q[yj >> 2]) {
|
|
if (
|
|
(0 |
|
|
(Vj =
|
|
q[((Zj = vj << 2) + q[(a + 16) >> 2]) >> 2])) <
|
|
1
|
|
)
|
|
Xj = x(0);
|
|
else
|
|
for (
|
|
$j = (Vj + Wj) | 0,
|
|
ak = q[(a + 12) >> 2],
|
|
Xj = x(0),
|
|
Vj = Wj;
|
|
(Xj = x(Xj + u[(ak + (Vj << 2)) >> 2])),
|
|
(0 | (Vj = (Vj + 1) | 0)) < (0 | $j);
|
|
|
|
);
|
|
u[(xj + Zj) >> 2] = Xj;
|
|
}
|
|
if (
|
|
((yj = (yj + 4) | 0),
|
|
(Wj = (q[(_j + (vj << 2)) >> 2] + Wj) | 0), !((0 | (vj = (vj + 1) | 0)) < (0 | Yj)))
|
|
)
|
|
break;
|
|
}
|
|
else
|
|
for (Zj = q[(a + 16) >> 2], vj = yj = 0;;) {
|
|
if ((0 | (Vj = q[((Wj = yj << 2) + Zj) >> 2])) <= 0)
|
|
Xj = x(0);
|
|
else
|
|
for (
|
|
$j = (vj + Vj) | 0,
|
|
ak = q[(a + 12) >> 2],
|
|
Xj = x(0),
|
|
Vj = vj;
|
|
(Xj = x(Xj + u[(ak + (Vj << 2)) >> 2])),
|
|
(0 | (Vj = (Vj + 1) | 0)) < (0 | $j);
|
|
|
|
);
|
|
if (
|
|
((u[(xj + Wj) >> 2] = Xj),
|
|
(vj = (q[(Wj + _j) >> 2] + vj) | 0), !((0 | (yj = (yj + 1) | 0)) < (0 | Yj)))
|
|
)
|
|
break;
|
|
}
|
|
}),
|
|
(n[7] = function(a, vj, xj, yj) {
|
|
(a |= 0), (vj |= 0), (xj |= 0), (yj |= 0);
|
|
var zj = 0,
|
|
Aj = x(0),
|
|
Qj = 0,
|
|
Rj = 0,
|
|
Sj = 0,
|
|
Tj = 0,
|
|
Uj = 0;
|
|
if (1 <= (0 | (Tj = q[(a + 8) >> 2])))
|
|
for (
|
|
Rj = q[(a + 12) >> 2], Sj = q[(a + 20) >> 2];
|
|
(u[((Qj = zj << 2) + Rj) >> 2] =
|
|
u[(vj + Qj) >> 2] * u[(Qj + Sj) >> 2]),
|
|
(0 | (zj = (zj + 1) | 0)) < (0 | Tj);
|
|
|
|
);
|
|
if (!((0 | (zj = q[a >> 2])) < 1))
|
|
if (((Tj = q[(a + 4) >> 2]), yj))
|
|
for (Qj = vj = 0;;) {
|
|
if (q[yj >> 2]) {
|
|
if (
|
|
(0 |
|
|
(zj =
|
|
q[((Rj = vj << 2) + q[(a + 16) >> 2]) >> 2])) <
|
|
1
|
|
)
|
|
Aj = x(0);
|
|
else
|
|
for (
|
|
Sj = (zj + Qj) | 0,
|
|
Uj = q[(a + 12) >> 2],
|
|
Aj = x(0),
|
|
zj = Qj;
|
|
(Aj = x(Aj + u[(Uj + (zj << 2)) >> 2])),
|
|
(0 | (zj = (zj + 1) | 0)) < (0 | Sj);
|
|
|
|
);
|
|
(zj = (xj + Rj) | 0),
|
|
(Aj = x(Aj + x(0.0010000000474974513))),
|
|
(Rj =
|
|
x(y(Aj)) < x(2147483648) ? ~~Aj : -2147483648),
|
|
(q[zj >> 2] = Rj),
|
|
(zj = q[a >> 2]);
|
|
}
|
|
if (
|
|
((yj = (yj + 4) | 0),
|
|
(Qj = (q[(Tj + (vj << 2)) >> 2] + Qj) | 0), !((0 | (vj = (vj + 1) | 0)) < (0 | zj)))
|
|
)
|
|
break;
|
|
}
|
|
else
|
|
for (Rj = q[(a + 16) >> 2], vj = yj = 0;;) {
|
|
if ((0 | (zj = q[((Qj = yj << 2) + Rj) >> 2])) <= 0)
|
|
Aj = x(0);
|
|
else
|
|
for (
|
|
Sj = (vj + zj) | 0,
|
|
Uj = q[(a + 12) >> 2],
|
|
Aj = x(0),
|
|
zj = vj;
|
|
(Aj = x(Aj + u[(Uj + (zj << 2)) >> 2])),
|
|
(0 | (zj = (zj + 1) | 0)) < (0 | Sj);
|
|
|
|
);
|
|
if (
|
|
((zj = (xj + Qj) | 0),
|
|
(Aj = x(Aj + x(0.0010000000474974513))),
|
|
(Sj = x(y(Aj)) < x(2147483648) ? ~~Aj : -2147483648),
|
|
(q[zj >> 2] = Sj),
|
|
(vj = (q[(Qj + Tj) >> 2] + vj) | 0), !((0 | (yj = (yj + 1) | 0)) < q[a >> 2]))
|
|
)
|
|
break;
|
|
}
|
|
}),
|
|
(n[8] = function(a, vj, xj, yj, zj, Aj) {
|
|
(a |= 0),
|
|
(vj |= 0),
|
|
(xj |= 0),
|
|
(yj |= 0),
|
|
(zj |= 0),
|
|
(Aj |= 0);
|
|
var Oj,
|
|
Pj,
|
|
Bj = 0,
|
|
Cj = 0,
|
|
Dj = 0,
|
|
Ej = 0,
|
|
Fj = 0,
|
|
Gj = 0,
|
|
Hj = 0,
|
|
Ij = 0,
|
|
Kj = 0,
|
|
Lj = 0,
|
|
Mj = x(0),
|
|
Nj = 0,
|
|
Jj = q[a >> 2];
|
|
if (!((0 | Jj) < 1))
|
|
if (((Oj = zj << 2), (Pj = q[(a + 4) >> 2]), Aj))
|
|
for (;;) {
|
|
if (
|
|
q[Aj >> 2] &&
|
|
((Dj = q[((Bj = Ej << 2) + q[(a + 16) >> 2]) >> 2]),
|
|
(Hj = q[(xj + Bj) >> 2]),
|
|
(Cj = q[(yj + Bj) >> 2]),
|
|
(Bj = (0 | (Ij = w(Cj, zj))) < 1) ||
|
|
ca(Hj, 0, w(Cj, Oj)), !(Bj | ((0 | Dj) < 1)))
|
|
)
|
|
for (
|
|
Kj = (Dj + Gj) | 0, Lj = q[(a + 20) >> 2], Bj = Gj;;
|
|
|
|
) {
|
|
for (
|
|
Mj = u[((Cj = Bj << 2) + Lj) >> 2],
|
|
Nj = q[(vj + Cj) >> 2],
|
|
Fj = 0;
|
|
(u[(Cj = ((Dj = Fj << 2) + Hj) | 0) >> 2] =
|
|
u[Cj >> 2] + x(Mj * u[(Dj + Nj) >> 2])),
|
|
(0 | Ij) != (0 | (Fj = (Fj + 1) | 0));
|
|
|
|
);
|
|
if (!((0 | (Bj = (Bj + 1) | 0)) < (0 | Kj))) break;
|
|
}
|
|
if (
|
|
((Aj = (Aj + 4) | 0),
|
|
(Gj = (q[((Ej << 2) + Pj) >> 2] + Gj) | 0), !((0 | (Ej = (Ej + 1) | 0)) < (0 | Jj)))
|
|
)
|
|
break;
|
|
}
|
|
else
|
|
for (Aj = 0;;) {
|
|
if (
|
|
((Dj = q[((Ej = Aj << 2) + q[(a + 16) >> 2]) >> 2]),
|
|
(Hj = q[(xj + Ej) >> 2]),
|
|
(Cj = q[(yj + Ej) >> 2]),
|
|
(Bj = (0 | (Ij = w(Cj, zj))) < 1) ||
|
|
ca(Hj, 0, w(Cj, Oj)), !(Bj | ((0 | Dj) <= 0)))
|
|
)
|
|
for (
|
|
Kj = (Dj + Gj) | 0, Lj = q[(a + 20) >> 2], Bj = Gj;;
|
|
|
|
) {
|
|
for (
|
|
Mj = u[((Cj = Bj << 2) + Lj) >> 2],
|
|
Nj = q[(vj + Cj) >> 2],
|
|
Fj = 0;
|
|
(u[(Cj = ((Dj = Fj << 2) + Hj) | 0) >> 2] =
|
|
u[Cj >> 2] + x(Mj * u[(Dj + Nj) >> 2])),
|
|
(0 | Ij) != (0 | (Fj = (Fj + 1) | 0));
|
|
|
|
);
|
|
if (!((0 | (Bj = (Bj + 1) | 0)) < (0 | Kj))) break;
|
|
}
|
|
if (
|
|
((Gj = (q[(Ej + Pj) >> 2] + Gj) | 0), !((0 | (Aj = (Aj + 1) | 0)) < (0 | Jj)))
|
|
)
|
|
break;
|
|
}
|
|
}),
|
|
(n[9] = function(a) {
|
|
var Me,
|
|
Ne,
|
|
Oe,
|
|
Ie = 0,
|
|
Je = 0,
|
|
Ke = 0,
|
|
Le = 0;
|
|
if (!(
|
|
q[((a |= 0) + 648) >> 2] ||
|
|
(0 | (Ie = q[(a + 332) >> 2])) < 1
|
|
))
|
|
for (
|
|
Ne = ((Je = q[(a + 336) >> 2]) + w(Ie, 20)) | 0,
|
|
Ie = q[(a + 424) >> 2],
|
|
Le = q[(a + 444) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
q[Ie >> 2] &&
|
|
!((0 | (Ke = q[(Je + 16) >> 2])) < (a = 1))
|
|
)
|
|
for (
|
|
Ke <<= 1, Oe = q[Le >> 2];
|
|
(u[(Me = ((a << 2) + Oe) | 0) >> 2] = -u[Me >> 2]),
|
|
(0 | (a = (a + 2) | 0)) < (0 | Ke);
|
|
|
|
);
|
|
if (
|
|
((Le = (Le + 4) | 0),
|
|
(Ie = (Ie + 4) | 0), !((Je = (Je + 20) | 0) >>> 0 < Ne >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
}),
|
|
(n[10] = function(a, Sm, un) {
|
|
var wn;
|
|
return (
|
|
$(
|
|
(wn = q[(20 + (a |= 0)) >> 2]),
|
|
(Sm |= 0),
|
|
(Sm =
|
|
(un |= 0) >>> 0 <
|
|
(Sm = (q[(a + 16) >> 2] - wn) | 0) >>> 0 ?
|
|
un :
|
|
Sm)
|
|
),
|
|
(q[(a + 20) >> 2] = Sm + q[(a + 20) >> 2]),
|
|
0 | un
|
|
);
|
|
}),
|
|
(n[11] = function(a, Il, Rm, Sm, Tm, Um) {
|
|
(a |= 0),
|
|
(Il = +Il),
|
|
(Rm |= 0),
|
|
(Sm |= 0),
|
|
(Tm |= 0),
|
|
(Um |= 0);
|
|
var fn,
|
|
qn,
|
|
Zm,
|
|
kn,
|
|
Vm = 0,
|
|
Wm = 0,
|
|
Xm = 0,
|
|
Ym = 0,
|
|
_m = 0,
|
|
$m = 0,
|
|
an = 0,
|
|
bn = 0,
|
|
cn = 0,
|
|
dn = 0,
|
|
en = 0,
|
|
gn = 0,
|
|
hn = 0,
|
|
jn = 0,
|
|
mn = 0;
|
|
if (
|
|
((q[(44 + (L = Zm = (L - 560) | 0)) >> 2] = 0),
|
|
h(+Il),
|
|
(Vm = 0 | b[1]),
|
|
(qn = 4294967295 < b[0] >>> 0 ? 0 : 1),
|
|
(kn =
|
|
(0 | Vm) < -1 || ((0 | Vm) <= -1 && qn) ?
|
|
(h((Il = -Il)), (Vm = 0 | b[1]), b[0], (jn = 1), 3840) :
|
|
2048 & Tm ?
|
|
((jn = 1), 3843) :
|
|
(jn = 1 & Tm) ?
|
|
3846 :
|
|
3841),
|
|
2146435072 == (2146435072 & Vm))
|
|
)
|
|
_(a, 32, Rm, ($m = (jn + 3) | 0), -65537 & Tm),
|
|
Z(a, kn, jn),
|
|
(Sm = (Um >>> 5) & 1),
|
|
Z(a, Il != Il ? (Sm ? 3867 : 3871) : Sm ? 3859 : 3863, 3);
|
|
else if (
|
|
((Il = (function Ja(a, ic) {
|
|
var kc,
|
|
lc,
|
|
jc = 0;
|
|
if (
|
|
(h(+a),
|
|
(jc = 0 | b[1]),
|
|
(kc = 0 | b[0]),
|
|
2047 != (0 | (jc = ((lc = jc) >>> 20) & 2047)))
|
|
) {
|
|
if (!jc)
|
|
return (
|
|
(jc = ic),
|
|
(ic =
|
|
0 == a ?
|
|
0 :
|
|
((a = Ja(0x10000000000000000 * a, ic)),
|
|
(q[ic >> 2] + -64) | 0)),
|
|
(q[jc >> 2] = ic),
|
|
a
|
|
);
|
|
(q[ic >> 2] = jc + -1022),
|
|
f(0, 0 | kc),
|
|
f(1, (-2146435073 & lc) | 1071644672),
|
|
(a = +g());
|
|
}
|
|
return a;
|
|
})(Il, (44 + Zm) | 0)),
|
|
0 != (Il += Il) &&
|
|
(q[(44 + Zm) >> 2] = q[(44 + Zm) >> 2] + -1),
|
|
(fn = (16 + Zm) | 0),
|
|
97 == (0 | (qn = 32 | Um)))
|
|
) {
|
|
if (
|
|
((en = (dn = 32 & Um) ? (9 + kn) | 0 : kn), !(11 < Sm >>> 0) && (Vm = (12 - Sm) | 0))
|
|
) {
|
|
for (gn = 8;
|
|
(gn *= 16), (Vm = (Vm + -1) | 0););
|
|
Il = 45 == r[0 | en] ? -(gn + (-Il - gn)) : Il + gn - gn;
|
|
}
|
|
for (
|
|
(0 | fn) ==
|
|
(0 |
|
|
(Vm = ga(
|
|
(Xm = (Vm = q[(44 + Zm) >> 2]) >> 31) ^ (Vm + Xm),
|
|
0,
|
|
fn
|
|
))) &&
|
|
((o[(15 + Zm) | 0] = 48), (Vm = (15 + Zm) | 0)),
|
|
_m = 2 | jn,
|
|
Xm = q[(44 + Zm) >> 2],
|
|
o[0 | (cn = (Vm + -2) | 0)] = Um + 15,
|
|
o[(Vm + -1) | 0] = (0 | Xm) < 0 ? 45 : 43,
|
|
Vm = 8 & Tm,
|
|
Wm = (16 + Zm) | 0;
|
|
(Um = Wm),
|
|
(bn = dn),
|
|
(Xm = y(Il) < 2147483648 ? ~~Il : -2147483648),
|
|
(o[0 | Wm] = bn | r[(Xm + 3824) | 0]),
|
|
(1 != (((Wm = (Um + 1) | 0) - ((16 + Zm) | 0)) | 0)) |
|
|
(0 == (Il = 16 * (Il - (0 | Xm))) ?
|
|
!(Vm | (0 < (0 | Sm))) :
|
|
0) ||
|
|
((o[(Um + 1) | 0] = 46), (Wm = (Um + 2) | 0)),
|
|
0 != Il;
|
|
|
|
);
|
|
_(
|
|
a,
|
|
32,
|
|
Rm,
|
|
($m =
|
|
((Um = !Sm | ((0 | Sm) <= ((((Wm - Zm) | 0) - 18) | 0)) ?
|
|
(((((fn - ((16 + Zm) | 0)) | 0) - cn) | 0) + Wm) |
|
|
0 :
|
|
(2 + ((((Sm + fn) | 0) - cn) | 0)) | 0) +
|
|
_m) |
|
|
0),
|
|
Tm
|
|
),
|
|
Z(a, en, _m),
|
|
_(a, 48, Rm, $m, 65536 ^ Tm),
|
|
Z(a, (16 + Zm) | 0, (Sm = (Wm - ((16 + Zm) | 0)) | 0)),
|
|
_(
|
|
a,
|
|
48,
|
|
(Um - (((Vm = Sm) + (Sm = (fn - cn) | 0)) | 0)) | 0,
|
|
0,
|
|
0
|
|
),
|
|
Z(a, cn, Sm);
|
|
} else {
|
|
for (
|
|
Vm = (0 | Sm) < 0,
|
|
0 == Il ?
|
|
(Ym = q[(44 + Zm) >> 2]) :
|
|
((Ym = (q[(44 + Zm) >> 2] + -28) | 0),
|
|
(q[(44 + Zm) >> 2] = Ym),
|
|
(Il *= 268435456)),
|
|
an = Vm ? 6 : Sm,
|
|
Xm = dn = (0 | Ym) < 0 ? (48 + Zm) | 0 : (336 + Zm) | 0;
|
|
(Xm = ((Sm = Xm) + 4) | 0),
|
|
0 !=
|
|
(Il =
|
|
1e9 *
|
|
(Il -
|
|
((q[Sm >> 2] = Vm =
|
|
(Il < 4294967296) & (0 <= Il) ?
|
|
~~Il >>> 0 :
|
|
0) >>>
|
|
0)));
|
|
|
|
);
|
|
if ((0 | Ym) < 1)(Vm = Xm), (Wm = dn);
|
|
else
|
|
for (Wm = dn;;) {
|
|
if (
|
|
((cn = (0 | Ym) < 29 ? Ym : 29), !((Vm = (Xm + -4) | 0) >>> 0 < Wm >>> 0))
|
|
) {
|
|
for (
|
|
Sm = cn, bn = 0;
|
|
(mn = bn),
|
|
(bn = q[(en = Vm) >> 2]),
|
|
(_m = 31 & Sm),
|
|
(_m =
|
|
32 <= (63 & Sm) >>> ($m = 0) ?
|
|
((Ym = bn << _m), 0) :
|
|
((Ym =
|
|
((1 << _m) - 1) & (bn >>> (32 - _m))),
|
|
bn << _m)),
|
|
($m = (Ym + $m) | 0),
|
|
($m =
|
|
(bn = (mn + _m) | 0) >>> 0 < _m >>> 0 ?
|
|
($m + 1) | 0 :
|
|
$m),
|
|
(mn = en),
|
|
(en = ad((bn = bd((_m = bn), $m, 1e9)), M, 1e9)),
|
|
(q[mn >> 2] = _m - en),
|
|
Wm >>> 0 <= (Vm = (Vm + -4) | 0) >>> 0;
|
|
|
|
);
|
|
(Sm = bn) && (q[(Wm = (Wm + -4) | 0) >> 2] = Sm);
|
|
}
|
|
for (; Wm >>> 0 < (Vm = Xm) >>> 0 &&
|
|
!q[(Xm = (Vm + -4) | 0) >> 2];
|
|
|
|
);
|
|
if (
|
|
((Ym = (q[(44 + Zm) >> 2] - cn) | 0),
|
|
(Xm = Vm), !(0 < (0 | (q[(44 + Zm) >> 2] = Ym))))
|
|
)
|
|
break;
|
|
}
|
|
if ((0 | Ym) <= -1)
|
|
for (
|
|
hn = (1 + ((((an + 25) | 0) / 9) | 0)) | 0,
|
|
cn = 102 == (0 | qn);;
|
|
|
|
) {
|
|
if (
|
|
((bn = (0 | Ym) < -9 ? 9 : (0 - Ym) | 0),
|
|
Vm >>> 0 <= Wm >>> 0)
|
|
)
|
|
Wm = q[Wm >> 2] ? Wm : (Wm + 4) | 0;
|
|
else {
|
|
for (
|
|
en = 1e9 >>> bn,
|
|
_m = (-1 << bn) ^ -1,
|
|
Ym = 0,
|
|
Xm = Wm;
|
|
(Sm = q[Xm >> 2]),
|
|
(q[Xm >> 2] = (Sm >>> bn) + Ym),
|
|
(Ym = w(en, Sm & _m)),
|
|
(Xm = (Xm + 4) | 0) >>> 0 < Vm >>> 0;
|
|
|
|
);
|
|
(Wm = q[Wm >> 2] ? Wm : (Wm + 4) | 0),
|
|
Ym && ((q[Vm >> 2] = Ym), (Vm = (Vm + 4) | 0));
|
|
}
|
|
if (
|
|
((Ym = (bn + q[(44 + Zm) >> 2]) | 0),
|
|
(Vm =
|
|
(0 | hn) < (Vm - (Sm = cn ? dn : Wm)) >> 2 ?
|
|
(Sm + (hn << 2)) | 0 :
|
|
Vm), !((0 | (q[(44 + Zm) >> 2] = Ym)) < 0))
|
|
)
|
|
break;
|
|
}
|
|
if (!(
|
|
Vm >>> (Xm = 0) <= Wm >>> 0 ||
|
|
((Xm = w((dn - Wm) >> 2, 9)),
|
|
(Sm = q[Wm >> 2]) >>> 0 < (Ym = 10))
|
|
))
|
|
for (;
|
|
(Xm = (Xm + 1) | 0), (Ym = w(Ym, 10)) >>> 0 <= Sm >>> 0;
|
|
|
|
);
|
|
if (
|
|
(0 |
|
|
(Sm =
|
|
(((an - (102 == (0 | qn) ? 0 : Xm)) | 0) -
|
|
((103 == (0 | qn)) & (0 != (0 | an)))) |
|
|
0)) <
|
|
((w((Vm - dn) >> 2, 9) + -9) | 0)
|
|
) {
|
|
if (
|
|
(($m =
|
|
(((dn +
|
|
((Sm = ((0 | (_m = (Sm + 9216) | 0)) / 9) | 0) <<
|
|
2)) |
|
|
0) -
|
|
4092) |
|
|
0),
|
|
(Ym = 10),
|
|
(0 | (Sm = (1 + ((_m - w(Sm, 9)) | 0)) | 0)) <= 8)
|
|
)
|
|
for (;
|
|
(Ym = w(Ym, 10)), 9 != (0 | (Sm = (Sm + 1) | 0));
|
|
|
|
);
|
|
if (
|
|
((hn = ($m + 4) | 0),
|
|
((cn =
|
|
((en = q[$m >> 2]) -
|
|
w(Ym, (_m = ((en >>> 0) / (Ym >>> 0)) | 0))) |
|
|
0) ||
|
|
(0 | hn) != (0 | Vm)) &&
|
|
((gn =
|
|
cn >>> 0 < (Sm = Ym >>> 1) >>> 0 ?
|
|
0.5 :
|
|
(0 | Vm) == (0 | hn) && (0 | Sm) == (0 | cn) ?
|
|
1 :
|
|
1.5),
|
|
(Il = 1 & _m ? 9007199254740994 : 9007199254740992), !jn | (45 != r[0 | kn]) || ((gn = -gn), (Il = -Il)),
|
|
(q[$m >> 2] = Sm = (en - cn) | 0),
|
|
Il + gn != Il))
|
|
) {
|
|
if (1e9 <= (q[$m >> 2] = Sm = (Sm + Ym) | 0) >>> 0)
|
|
for (;
|
|
($m = ($m + -4) | (q[$m >> 2] = 0)) >>> 0 <
|
|
Wm >>> 0 && (q[(Wm = (Wm + -4) | 0) >> 2] = 0),
|
|
(Sm = (q[$m >> 2] + 1) | 0),
|
|
999999999 < (q[$m >> 2] = Sm) >>> 0;
|
|
|
|
);
|
|
if (
|
|
((Xm = w((dn - Wm) >> 2, 9)), !((Sm = q[Wm >> 2]) >>> 0 < (Ym = 10)))
|
|
)
|
|
for (;
|
|
(Xm = (Xm + 1) | 0),
|
|
(Ym = w(Ym, 10)) >>> 0 <= Sm >>> 0;
|
|
|
|
);
|
|
}
|
|
Vm = (Sm = ($m + 4) | 0) >>> 0 < Vm >>> 0 ? Sm : Vm;
|
|
}
|
|
j: {
|
|
for (;;) {
|
|
if ((cn = Vm) >>> (en = 0) <= Wm >>> 0) break j;
|
|
if (q[(Vm = (cn + -4) | 0) >> 2]) break;
|
|
}
|
|
en = 1;
|
|
}
|
|
if (103 != (0 | qn)) _m = 8 & Tm;
|
|
else if (
|
|
((an =
|
|
(((Sm =
|
|
((0 | Xm) < (0 | (Vm = an || 1))) & (-5 < (0 | Xm))) ?
|
|
-1 ^ Xm :
|
|
-1) +
|
|
Vm) |
|
|
0),
|
|
(Um = ((Sm ? -1 : -2) + Um) | 0), !(_m = 8 & Tm))
|
|
) {
|
|
if (
|
|
((Vm = 9),
|
|
en &&
|
|
(_m = q[(cn + -4) >> 2]) &&
|
|
!((_m >>> (Vm = 0)) % (Sm = 10)))
|
|
)
|
|
for (;
|
|
(Vm = (Vm + 1) | 0), !((_m >>> 0) % ((Sm = w(Sm, 10)) >>> 0));
|
|
|
|
);
|
|
(Sm = (w((cn - dn) >> 2, 9) + -9) | 0),
|
|
(an =
|
|
102 == (32 | Um) ?
|
|
((_m = 0) | an) <
|
|
(0 |
|
|
(Sm = 0 < (0 | (Sm = (Sm - Vm) | 0)) ? Sm : 0)) ?
|
|
an :
|
|
Sm :
|
|
((_m = 0) | an) <
|
|
(0 |
|
|
(Sm =
|
|
0 < (0 | (Sm = (((Sm + Xm) | 0) - Vm) | 0)) ?
|
|
Sm :
|
|
0)) ?
|
|
an :
|
|
Sm);
|
|
}
|
|
if (
|
|
(($m = 0 != (0 | (Ym = an | _m))),
|
|
(Sm = a),
|
|
(mn = Rm),
|
|
(Vm = 0 < (0 | Xm) ? Xm : 0),
|
|
102 != (0 | (bn = 32 | Um)))
|
|
) {
|
|
if (
|
|
((fn - (Vm = ga(((Vm = Xm >> 31) + Xm) ^ Vm, 0, fn))) |
|
|
0) <=
|
|
1
|
|
)
|
|
for (;
|
|
(o[0 | (Vm = (Vm + -1) | 0)] = 48),
|
|
((fn - Vm) | 0) < 2;
|
|
|
|
);
|
|
(o[0 | (hn = (Vm + -2) | 0)] = Um),
|
|
(o[(Vm + -1) | 0] = (0 | Xm) < 0 ? 45 : 43),
|
|
(Vm = (fn - hn) | 0);
|
|
}
|
|
if (
|
|
(_(
|
|
Sm,
|
|
32,
|
|
mn,
|
|
($m =
|
|
(1 + ((Vm + (($m + ((an + jn) | 0)) | 0)) | 0)) | 0),
|
|
Tm
|
|
),
|
|
Z(a, kn, jn),
|
|
_(a, 48, Rm, $m, 65536 ^ Tm),
|
|
102 == (0 | bn))
|
|
) {
|
|
for (
|
|
Sm = (16 + Zm) | 8,
|
|
Xm = (16 + Zm) | 9,
|
|
Wm = Um = dn >>> 0 < Wm >>> 0 ? dn : Wm;;
|
|
|
|
) {
|
|
if (
|
|
((Vm = ga(q[Wm >> 2], 0, Xm)), (0 | Um) != (0 | Wm))
|
|
) {
|
|
if (!(Vm >>> 0 <= (16 + Zm) >>> 0))
|
|
for (;
|
|
(o[0 | (Vm = (Vm + -1) | 0)] = 48),
|
|
(16 + Zm) >>> 0 < Vm >>> 0;
|
|
|
|
);
|
|
} else
|
|
(0 | Vm) == (0 | Xm) &&
|
|
((o[(24 + Zm) | 0] = 48), (Vm = Sm));
|
|
if (
|
|
(Z(a, Vm, (Xm - Vm) | 0), !((Wm = (Wm + 4) | 0) >>> 0 <= dn >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
Ym && Z(a, 3875, 1);
|
|
p: if (!(((0 | an) < 1) | (cn >>> 0 <= Wm >>> 0)))
|
|
for (;;) {
|
|
if (
|
|
(16 + Zm) >>> 0 <
|
|
(Vm = ga(q[Wm >> 2], 0, Xm)) >>> 0
|
|
)
|
|
for (;
|
|
(o[0 | (Vm = (Vm + -1) | 0)] = 48),
|
|
(16 + Zm) >>> 0 < Vm >>> 0;
|
|
|
|
);
|
|
if (
|
|
(Z(a, Vm, (0 | an) < 9 ? an : 9),
|
|
(an = (an + -9) | 0),
|
|
cn >>> 0 <= (Wm = (Wm + 4) | 0) >>> 0)
|
|
)
|
|
break p;
|
|
if (!(0 < (0 | an))) break;
|
|
}
|
|
_(a, 48, (an + 9) | 0, 9, 0);
|
|
} else {
|
|
q: if (!((0 | an) < 0))
|
|
for (
|
|
Um = en ? cn : (Wm + 4) | 0,
|
|
Sm = (16 + Zm) | 8,
|
|
dn = (16 + Zm) | 9,
|
|
Xm = Wm;;
|
|
|
|
) {
|
|
if (
|
|
((0 | dn) == (0 | (Vm = ga(q[Xm >> 2], 0, dn))) &&
|
|
((o[(24 + Zm) | 0] = 48), (Vm = Sm)),
|
|
(0 | Wm) != (0 | Xm))
|
|
) {
|
|
if (!(Vm >>> 0 <= (16 + Zm) >>> 0))
|
|
for (;
|
|
(o[0 | (Vm = (Vm + -1) | 0)] = 48),
|
|
(16 + Zm) >>> 0 < Vm >>> 0;
|
|
|
|
);
|
|
} else
|
|
Z(a, Vm, 1),
|
|
(Vm = (Vm + 1) | 0),
|
|
((0 | an) < 1 && !_m) || Z(a, 3875, 1);
|
|
if (
|
|
(Z(
|
|
a,
|
|
(bn = Vm),
|
|
(0 | (Vm = (dn - Vm) | 0)) < (0 | an) ? Vm : an
|
|
),
|
|
(an = (an - Vm) | 0),
|
|
Um >>> 0 <= (Xm = (Xm + 4) | 0) >>> 0)
|
|
)
|
|
break q;
|
|
if (!(-1 < (0 | an))) break;
|
|
}
|
|
_(a, 48, (an + 18) | 0, 18, 0),
|
|
Z(a, hn, (fn - hn) | 0);
|
|
}
|
|
}
|
|
return (
|
|
_(a, 32, Rm, $m, 8192 ^ Tm),
|
|
(L = (560 + Zm) | 0),
|
|
0 | ((0 | $m) < (0 | Rm) ? Rm : $m)
|
|
);
|
|
}),
|
|
(n[12] = function(a, Il) {
|
|
a |= 0;
|
|
var tm = (Il |= 0);
|
|
(Il = (q[Il >> 2] + 15) & -16),
|
|
(q[tm >> 2] = Il + 16),
|
|
(tm = a),
|
|
(a = (function(a, Il, Jl, tm) {
|
|
var zm,
|
|
wm,
|
|
um = 0,
|
|
vm = 0,
|
|
xm = 0,
|
|
ym = 0;
|
|
return (
|
|
(L = wm = (L - 32) | 0),
|
|
(um = ((ym = um = 2147483647 & tm) - 1006698496) | 0),
|
|
(vm = um =
|
|
(zm = vm = xm = Jl) >>> 0 < 0 ? (um + 1) | 0 : um),
|
|
(um = (ym - 1140785152) | 0),
|
|
(((0 | (um = xm >>> 0 < 0 ? (um + 1) | 0 : um)) ==
|
|
(0 | vm)) &
|
|
(zm >>> 0 < xm >>> 0)) |
|
|
(vm >>> 0 < um >>> 0) ?
|
|
((um = (tm << 4) | (Jl >>> 28)),
|
|
(Jl = (Jl << 4) | (Il >>> 28)),
|
|
((134217728 == (0 | (xm = Il &= 268435455))) &
|
|
(1 <= a >>> 0)) |
|
|
(134217728 < Il >>> 0) ?
|
|
((um = (um + 1073741824) | 0),
|
|
(a = (Jl + 1) | 0) >>> 0 < 1 &&
|
|
(um = (um + 1) | 0),
|
|
(vm = a)) :
|
|
((um =
|
|
(um -
|
|
((((vm = Jl) >>> 0 < 0) + -1073741824) |
|
|
0)) |
|
|
0),
|
|
a | (134217728 ^ xm) ||
|
|
((a = (vm + (1 & vm)) | 0) >>> 0 < vm >>> 0 &&
|
|
(um = (um + 1) | 0),
|
|
(vm = a)))) :
|
|
(!xm & (2147418112 == (0 | ym)) ?
|
|
!(a | Il) :
|
|
((2147418112 == (0 | ym)) & (xm >>> 0 < 0)) |
|
|
(ym >>> 0 < 2147418112)
|
|
) ?
|
|
((um = 2146435072),
|
|
((1140785151 == ((vm = 0) | ym)) &
|
|
(4294967295 < xm >>> 0)) |
|
|
(1140785151 < ym >>> 0) ||
|
|
(xm = ym >>> 16) >>> (um = 0) < 15249 ||
|
|
((function(a, Il, Jl, tm, Bm, Cm) {
|
|
var Jm,
|
|
Km,
|
|
Hm = 0,
|
|
Im = 0;
|
|
64 & Cm ?
|
|
((Il = 31 & (Jl = (Cm - 64) | 0)),
|
|
(Il =
|
|
32 <= (63 & Jl) >>> 0 ?
|
|
((Jl = 0), Bm >>> Il) :
|
|
((Jl = Bm >>> Il),
|
|
((((1 << Il) - 1) & Bm) <<
|
|
(32 - Il)) |
|
|
(tm >>> Il))),
|
|
(Bm = tm = 0)) :
|
|
Cm &&
|
|
((Im = Bm),
|
|
(Hm = 31 & (Km = (64 - Cm) | 0)),
|
|
(Km =
|
|
32 <= (63 & Km) >>> 0 ?
|
|
((Im = tm << Hm), 0) :
|
|
((Im =
|
|
(((1 << Hm) - 1) &
|
|
(tm >>> (32 - Hm))) |
|
|
(Im << Hm)),
|
|
tm << Hm)),
|
|
(Jm = Il),
|
|
(Il = 31 & (Hm = Cm)),
|
|
(Il =
|
|
32 <= (63 & Hm) >>> 0 ?
|
|
((Hm = 0), Jl >>> Il) :
|
|
((Hm = Jl >>> Il),
|
|
((((1 << Il) - 1) & Jl) <<
|
|
(32 - Il)) |
|
|
(Jm >>> Il))),
|
|
(Il |= Km),
|
|
(Jl = Hm | Im),
|
|
(Hm = tm),
|
|
(tm = 31 & Cm),
|
|
(tm =
|
|
32 <= (63 & Cm) >>> 0 ?
|
|
((Im = 0), Bm >>> tm) :
|
|
((Im = Bm >>> tm),
|
|
((((1 << tm) - 1) & Bm) <<
|
|
(32 - tm)) |
|
|
(Hm >>> tm))),
|
|
(Bm = Im)),
|
|
(q[a >> 2] = Il),
|
|
(q[(4 + a) >> 2] = Jl),
|
|
(q[(8 + a) >> 2] = tm),
|
|
(q[(12 + a) >> 2] = Bm);
|
|
})(
|
|
wm,
|
|
a,
|
|
Il,
|
|
Jl,
|
|
(um = (65535 & tm) | 65536),
|
|
(15361 - xm) | 0
|
|
),
|
|
(function(a, Il, Jl, tm, Bm, Cm) {
|
|
var Fm,
|
|
Dm,
|
|
Em = 0;
|
|
64 & Cm ?
|
|
((tm = Il),
|
|
(Il = 31 & (Bm = (Cm + -64) | 0)),
|
|
32 <= (63 & Bm) >>> 0 ?
|
|
((Bm = tm << Il), (tm = 0)) :
|
|
((Bm =
|
|
(((1 << Il) - 1) &
|
|
(tm >>> (32 - Il))) |
|
|
(Jl << Il)),
|
|
(tm <<= Il)),
|
|
(Jl = Il = 0)) :
|
|
Cm &&
|
|
((Dm = tm),
|
|
(tm = 31 & (Fm = Cm)),
|
|
(Dm =
|
|
32 <= (63 & Cm) >>> 0 ?
|
|
((Em = Dm << tm), 0) :
|
|
((Em =
|
|
(((1 << tm) - 1) &
|
|
(Dm >>> (32 - tm))) |
|
|
(Bm << tm)),
|
|
Dm << tm)),
|
|
(tm = Jl),
|
|
(Bm = 31 & (Cm = (64 - Cm) | 0)),
|
|
32 <= (63 & Cm) >>> 0 ?
|
|
((Cm = 0), (tm >>>= Bm)) :
|
|
((Cm = tm >>> Bm),
|
|
(tm =
|
|
((((1 << Bm) - 1) & tm) <<
|
|
(32 - Bm)) |
|
|
(Il >>> Bm))),
|
|
(tm |= Dm),
|
|
(Bm = Cm | Em),
|
|
(Cm = Il),
|
|
(Il = 31 & Fm),
|
|
(Il =
|
|
32 <= (63 & Fm) >>> 0 ?
|
|
((Em = Cm << Il), 0) :
|
|
((Em =
|
|
(((1 << Il) - 1) &
|
|
(Cm >>> (32 - Il))) |
|
|
(Jl << Il)),
|
|
Cm << Il)),
|
|
(Jl = Em)),
|
|
(q[a >> 2] = Il),
|
|
(q[(4 + a) >> 2] = Jl),
|
|
(q[(8 + a) >> 2] = tm),
|
|
(q[(12 + a) >> 2] = Bm);
|
|
})(
|
|
(16 + wm) | 0,
|
|
a,
|
|
Il,
|
|
Jl,
|
|
um,
|
|
(xm + -15233) | 0
|
|
),
|
|
(Jl = q[(4 + wm) >> 2]),
|
|
(a = q[(8 + wm) >> 2]),
|
|
(um = (q[(12 + wm) >> 2] << 4) | (a >>> 28)),
|
|
(vm = (a << 4) | (Jl >>> 28)),
|
|
((134217728 == (0 | (Jl = a = 268435455 & Jl))) &
|
|
(1 <=
|
|
(Il =
|
|
q[wm >> 2] |
|
|
((0 !=
|
|
(q[(16 + wm) >> 2] | q[(24 + wm) >> 2])) |
|
|
(0 !=
|
|
(q[(20 + wm) >> 2] |
|
|
q[(28 + wm) >> 2])))) >>>
|
|
0)) |
|
|
(134217728 < a >>> 0) ?
|
|
((a = (vm + 1) | 0) >>> 0 < 1 &&
|
|
(um = (um + 1) | 0),
|
|
(vm = a)) :
|
|
Il | (134217728 ^ Jl) ||
|
|
((a = (vm + (1 & vm)) | 0) >>> 0 < vm >>> 0 &&
|
|
(um = (um + 1) | 0),
|
|
(vm = a)))) :
|
|
((vm = (Jl << 4) | (Il >>> 28)),
|
|
(um =
|
|
(524287 & (um = (tm << 4) | (Jl >>> 28))) |
|
|
2146959360)),
|
|
(L = (32 + wm) | 0),
|
|
f(0, 0 | vm),
|
|
f(1, (-2147483648 & tm) | um), +g()
|
|
);
|
|
})(
|
|
q[Il >> 2],
|
|
q[(Il + 4) >> 2],
|
|
q[(Il + 8) >> 2],
|
|
q[(Il + 12) >> 2]
|
|
)),
|
|
(v[tm >> 3] = a);
|
|
}),
|
|
(n[13] = function(a) {
|
|
return 0;
|
|
}),
|
|
(n[14] = function(a, Il, tm) {
|
|
(Il |= 0), (tm |= 0);
|
|
var Om,
|
|
Cm,
|
|
Bm = 0,
|
|
Lm = 0,
|
|
Mm = 0,
|
|
Nm = 0;
|
|
for (
|
|
L = Cm = (L - 32) | 0,
|
|
Bm = q[(28 + (a |= 0)) >> 2],
|
|
q[(16 + Cm) >> 2] = Bm,
|
|
Mm = q[(a + 20) >> 2],
|
|
q[(28 + Cm) >> 2] = tm,
|
|
q[(24 + Cm) >> 2] = Il,
|
|
Mm = ((q[(20 + Cm) >> 2] = Il = (Mm - Bm) | 0) + tm) | 0,
|
|
Nm = 2,
|
|
Il = (16 + Cm) | 0;;
|
|
|
|
) {
|
|
a: {
|
|
if (
|
|
((Lm =
|
|
(Bm = 0) |
|
|
K(q[(a + 60) >> 2], 0 | Il, 0 | Nm, (12 + Cm) | 0)) &&
|
|
((q[2086] = Lm), (Bm = -1)),
|
|
(0 |
|
|
(Bm = Bm ?
|
|
(q[(12 + Cm) >> 2] = -1) :
|
|
q[(12 + Cm) >> 2])) ==
|
|
(0 | Mm))
|
|
)
|
|
(Il = q[(a + 44) >> 2]),
|
|
(q[(a + 28) >> 2] = Il),
|
|
(q[(a + 20) >> 2] = Il),
|
|
(q[(a + 16) >> 2] = Il + q[(a + 48) >> 2]),
|
|
(a = tm);
|
|
else {
|
|
if (-1 < (0 | Bm)) break a;
|
|
(q[(a + 28) >> 2] = 0),
|
|
(q[(a + 16) >> 2] = 0),
|
|
(q[(a + 20) >> 2] = 0),
|
|
(q[a >> 2] = 32 | q[a >> 2]),
|
|
2 != ((a = 0) | Nm) &&
|
|
(a = (tm - q[(Il + 4) >> 2]) | 0);
|
|
}
|
|
return (L = (32 + Cm) | 0),
|
|
0 | a;
|
|
}
|
|
(Lm = q[(Il + 4) >> 2]),
|
|
(q[
|
|
(Il = (Om = Lm >>> 0 < Bm >>> 0) ? (Il + 8) | 0 : Il) >>
|
|
2
|
|
] = (Lm = (Bm - (Om ? Lm : 0)) | 0) + q[Il >> 2]),
|
|
(q[(Il + 4) >> 2] = q[(Il + 4) >> 2] - Lm),
|
|
(Mm = (Mm - Bm) | 0),
|
|
(Nm = (Nm - Om) | 0);
|
|
}
|
|
}),
|
|
(n[15] = function(a, Il, tm, Bm) {
|
|
return (M = 0);
|
|
}), {
|
|
d: function() {},
|
|
e: function() {
|
|
return 83886080;
|
|
},
|
|
f: function() {
|
|
return 5;
|
|
},
|
|
g: function(a, vj) {
|
|
return (
|
|
(vj |= 0),
|
|
(L = vj = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
sa(a) ?
|
|
(Y(4, 2150, 0), 0) :
|
|
r[(a + 4) | 0] :
|
|
((q[(vj + 4) >> 2] = 1444),
|
|
(q[vj >> 2] = 2267),
|
|
Y(4, 1294, vj),
|
|
0)),
|
|
(L = (vj + 16) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
h: function(a, vj) {
|
|
var wj;
|
|
return (
|
|
(vj |= 0),
|
|
(L = wj = (L - 48) | 0),
|
|
(a = (a |= 0) ?
|
|
((a + 63) & -64) != (0 | a) ?
|
|
((q[(36 + wj) >> 2] = 1522),
|
|
(q[(32 + wj) >> 2] = 2284),
|
|
Y(4, 1294, (32 + wj) | 0),
|
|
0) :
|
|
((vj + 63) & -64) == (0 | vj) && vj ?
|
|
(function(a, Vk) {
|
|
var pl,
|
|
Wk = 0,
|
|
Xk = 0,
|
|
Yk = 0,
|
|
Zk = 0,
|
|
_k = 0,
|
|
$k = 0,
|
|
al = 0,
|
|
bl = 0,
|
|
cl = 0,
|
|
dl = 0,
|
|
el = 0,
|
|
fl = 0,
|
|
gl = 0,
|
|
hl = 0,
|
|
il = 0,
|
|
jl = 0,
|
|
kl = 0,
|
|
ll = 0,
|
|
ml = 0,
|
|
nl = 0,
|
|
ol = 0;
|
|
L = _k = ((pl = Xk = L) - 704) & -64;
|
|
a: if (Vk >>> 0 <= 1343) Y(4, 1235, 0);
|
|
else
|
|
if (sa(a)) Y(4, 1469, 0);
|
|
else if ((Xk = r[0 | (nl = (a + 4) | 0)])) {
|
|
if (!(6 <= Xk >>> 0)) {
|
|
(jl = 1 == (0 | !r[(a + 5) | 0])) ||
|
|
(da(nl, 1), X((a - -64) | 0, 4, 160)),
|
|
ca((_k - -64) | 0, 0, 640),
|
|
na(a, (_k - -64) | 0),
|
|
(Xk = (a + Vk) | 0),
|
|
(Vk = q[(_k + 64) >> 2]);
|
|
b: {
|
|
c: {
|
|
d: {
|
|
if (5 <= (il = r[(a + 4) | 0]) >>> 0) {
|
|
if (
|
|
(Vk >>> 0 < a >>> 0) |
|
|
(Xk >>> 0 < Vk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
(Zk = (Vk + 256) | 0) >>> 0 <
|
|
a >>> 0
|
|
)
|
|
break c;
|
|
if (Zk >>> 0 <= Xk >>> 0) break d;
|
|
break c;
|
|
}
|
|
if (
|
|
(Vk >>> 0 < a >>> 0) |
|
|
(Xk >>> 0 < Vk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = (Vk + 128) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0)
|
|
)
|
|
break c;
|
|
}
|
|
if (!(
|
|
((Yk = q[(_k + 68) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Zk >>> 0) ||
|
|
((Yk = (Yk - -64) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
(0 | (dl = q[Vk >> 2])) < 0 ||
|
|
((Zk = q[(_k + 72) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk =
|
|
((Wk = Zk) + (Zk = dl << 2)) |
|
|
0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((al = q[(_k + 76) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < al >>> 0) |
|
|
(al >>> 0 < Yk >>> 0) ||
|
|
((Wk = ((dl << 6) + al) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 80) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 84) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 88) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 92) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 96) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 100) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Yk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
(0 | (Wk = q[(Vk + 4) >> 2])) < 0 ||
|
|
((Zk = q[(_k + 104) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
(($k =
|
|
((Yk = Zk) + (Zk = Wk << 2)) |
|
|
0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Yk = q[(_k + 108) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < $k >>> 0) ||
|
|
((Wk = (Yk + (Wk << 6)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 112) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 116) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 120) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 124) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 128) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 132) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 136) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Yk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
(0 | (Wk = q[(Vk + 8) >> 2])) < 0 ||
|
|
((Zk = q[(_k + 140) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = ((el = Wk << 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 144) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + el) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 148) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + el) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 156) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + el) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 160) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + el) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 164) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + el) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
(0 | (Wk = q[(Vk + 12) >> 2])) < 0 ||
|
|
((Zk = q[(_k + 172) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = ((fl = Wk << 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 176) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + fl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 180) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + fl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 188) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Wk = (Zk + fl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
(0 | (Yk = q[(Vk + 16) >> 2])) < 0 ||
|
|
((Zk = q[(_k + 192) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0) ||
|
|
(($k =
|
|
((Wk = Zk) + (Zk = Yk << 2)) |
|
|
0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 196) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 200) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 204) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 208) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + (Yk << 6)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 212) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 216) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 220) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 228) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 232) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 236) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 240) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 244) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 248) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
((Wk = (Wk + Yk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 252) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 256) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 260) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 264) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 268) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Yk = q[(_k + 272) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
(0 | ($k = q[(Vk + 20) >> 2])) < 0 ||
|
|
((Yk = q[(_k + 276) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0) ||
|
|
((gl =
|
|
((Wk = Yk) + (Yk = $k << 2)) |
|
|
0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < gl >>> 0) ||
|
|
((Wk = q[(_k + 280) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < gl >>> 0) ||
|
|
(($k = (Wk + ($k << 6)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 284) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Yk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 288) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Yk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 292) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Yk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 296) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Yk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 300) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Yk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 308) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Yk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 312) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + Yk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
(0 | (gl = q[(Vk + 24) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 336) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + (gl << 2)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
(0 | (gl = q[(Vk + 28) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 340) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = ((ll = gl << 2) + Wk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
((Wk = q[(_k + 344) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
(($k = (Wk + ll) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < $k >>> 0) ||
|
|
(0 | (gl = q[(Vk + 32) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 356) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < $k >>> 0) ||
|
|
((gl = (($k = gl << 2) + Wk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < gl >>> 0) ||
|
|
((Wk = q[(_k + 360) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < gl >>> 0) ||
|
|
((gl = (Wk + $k) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < gl >>> 0) ||
|
|
((Wk = q[(_k + 364) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < gl >>> 0) ||
|
|
((gl = (Wk + $k) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < gl >>> 0) ||
|
|
((Wk = q[(_k + 368) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < gl >>> 0) ||
|
|
((gl = (Wk + $k) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < gl >>> 0) ||
|
|
((Wk = q[(_k + 372) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < gl >>> 0) ||
|
|
((gl = (Wk + $k) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < gl >>> 0) ||
|
|
((Wk = q[(_k + 376) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < gl >>> 0) ||
|
|
((gl = (Wk + $k) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < gl >>> 0) ||
|
|
((Wk = q[(_k + 380) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < gl >>> 0) ||
|
|
((gl = (Wk + $k) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < gl >>> 0) ||
|
|
(0 | (bl = q[(Vk + 36) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 392) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < gl >>> 0) ||
|
|
((bl = ((gl = bl << 2) + Wk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
((Wk = q[(_k + 396) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + gl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
((Wk = q[(_k + 400) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + gl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 40) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 412) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + (cl << 2)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 44) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 424) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + (cl << 2)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 48) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 428) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = ((cl <<= 2) + Wk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
((Wk = q[(_k + 432) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + cl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 52) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 416) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = ((cl <<= 2) + Wk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
((Wk = q[(_k + 420) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + cl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 56) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 552) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + (cl << 2)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 60) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 556) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + (cl << 2)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 64) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 560) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + (cl << 1)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 68) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 564) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + (cl << 2)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 72) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 568) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((cl =
|
|
((bl = Wk) + (Wk = cl << 2)) |
|
|
0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((bl = q[(_k + 572) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < cl >>> 0) ||
|
|
((cl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((bl = q[(_k + 576) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < cl >>> 0) ||
|
|
((cl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((bl = q[(_k + 580) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < cl >>> 0) ||
|
|
((cl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((bl = q[(_k + 584) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < cl >>> 0) ||
|
|
((bl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 76) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 588) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((cl = ((bl = cl << 2) + Wk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((Wk = q[(_k + 592) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < cl >>> 0) ||
|
|
((cl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((Wk = q[(_k + 596) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < cl >>> 0) ||
|
|
((bl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 80) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 600) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((hl =
|
|
((bl = Wk) + (Wk = cl << 2)) |
|
|
0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < hl >>> 0) ||
|
|
((bl = q[(_k + 604) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < hl >>> 0) ||
|
|
((cl = (bl + (cl << 6)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((bl = q[(_k + 608) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < cl >>> 0) ||
|
|
((cl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((bl = q[(_k + 612) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < cl >>> 0) ||
|
|
((cl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((bl = q[(_k + 616) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < cl >>> 0) ||
|
|
((cl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((bl = q[(_k + 620) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < cl >>> 0) ||
|
|
((cl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((bl = q[(_k + 624) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < cl >>> 0) ||
|
|
((cl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((bl = q[(_k + 628) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < cl >>> 0) ||
|
|
((cl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < cl >>> 0) ||
|
|
((bl = q[(_k + 632) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < cl >>> 0) ||
|
|
((bl = (Wk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 84) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 636) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + (cl << 2)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
((Wk = q[(_k + 640) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((bl = (Wk + (cl << 1)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) ||
|
|
(0 | (cl = q[(Vk + 88) >> 2])) < 0 ||
|
|
((Wk = q[(_k + 644) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0) ||
|
|
((Wk = (Wk + (cl << 2)) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)) {
|
|
if (!(il >>> 0 < 2)) {
|
|
if (
|
|
((bl = q[(_k + 168) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (bl + el) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (!(il >>> 0 < 4)) {
|
|
if (
|
|
((bl = q[(_k + 324) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0) |
|
|
(bl >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((bl = (Yk + bl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = q[(_k + 328) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((bl = (Wk + Yk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = q[(_k + 332) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((bl = (Wk + Yk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < bl >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = q[(_k + 152) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < bl >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((el = (Wk + el) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = q[(_k + 184) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((el = (Wk + fl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = q[(_k + 224) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) |
|
|
(Wk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
(0 | (el = q[(Vk + 92) >> 2])) <
|
|
0
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 648) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((el =
|
|
((Wk = el << 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 652) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((el = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 656) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
(0 | (el = q[(Vk + 96) >> 2])) <
|
|
0
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 660) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((el =
|
|
((Wk = el << 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 664) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((el = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 668) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < el >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 304) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 316) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 320) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
(0 | (Wk = q[(Vk + 100) >> 2])) <
|
|
0
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 436) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk =
|
|
((Yk = Wk << 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 440) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 444) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
(0 | (Wk = q[(Vk + 104) >> 2])) <
|
|
0
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 448) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk =
|
|
((Yk = Zk) + (Zk = Wk << 2)) |
|
|
0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = q[(_k + 452) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = q[(_k + 456) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = q[(_k + 460) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = q[(_k + 464) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) |
|
|
(Yk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
(0 | (Wk = q[(Vk + 108) >> 2])) <
|
|
0
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 480) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk =
|
|
((Yk = Wk << 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 484) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 488) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
(0 | (Wk = q[(Vk + 112) >> 2])) <
|
|
0
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 504) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk =
|
|
((Yk = Wk << 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 508) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 512) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
(0 | (Wk = q[(Vk + 116) >> 2])) <
|
|
0
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 528) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = (Zk + (Wk << 2)) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
(0 | (Wk = q[(Vk + 120) >> 2])) <
|
|
0
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 532) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk =
|
|
((Yk = Wk << 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 536) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 540) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
(0 | (Wk = q[(Vk + 124) >> 2])) <
|
|
0
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 544) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Yk = ((Wk <<= 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Zk = q[(_k + 548) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0)
|
|
)
|
|
break c;
|
|
if (
|
|
((Wk = (Wk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0)
|
|
)
|
|
break c;
|
|
}
|
|
}
|
|
if (il >>> 0 < 5) break b;
|
|
if (!(
|
|
((Zk = q[(_k + 348) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0) ||
|
|
((Yk = (Zk + ll) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 352) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + ll) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 384) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + $k) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 388) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + $k) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 404) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + gl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
((Zk = q[(_k + 408) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Yk = (Zk + gl) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
(0 | (Wk = q[(Vk + 128) >> 2])) <
|
|
0 ||
|
|
((Zk = q[(_k + 468) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Wk =
|
|
((Yk = Wk << 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Zk = q[(_k + 472) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Zk = q[(_k + 476) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0) ||
|
|
((Yk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
(0 | (Wk = q[(Vk + 132) >> 2])) <
|
|
0 ||
|
|
((Zk = q[(_k + 492) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Wk =
|
|
((Yk = Wk << 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Zk = q[(_k + 496) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Zk = q[(_k + 500) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0) ||
|
|
((Yk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Yk >>> 0) ||
|
|
(0 | (Wk = q[(Vk + 136) >> 2])) <
|
|
0 ||
|
|
((Zk = q[(_k + 516) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Yk >>> 0) ||
|
|
((Wk =
|
|
((Yk = Wk << 2) + Zk) | 0) >>>
|
|
0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Zk = q[(_k + 520) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0) ||
|
|
((Wk = (Yk + Zk) | 0) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Wk >>> 0) ||
|
|
((Zk = q[(_k + 524) >> 2]) >>> 0 <
|
|
a >>> 0) |
|
|
(Xk >>> 0 < Zk >>> 0) |
|
|
(Zk >>> 0 < Wk >>> 0) ||
|
|
(Zk = (Yk + Zk) | 0) >>> 0 < a >>> 0
|
|
) &&
|
|
Zk >>> 0 <= Xk >>> 0
|
|
)
|
|
break b;
|
|
}
|
|
}
|
|
Y(4, 1760, 0),
|
|
da(nl, 1),
|
|
X((a - -64) | 0, 4, 160);
|
|
break a;
|
|
}
|
|
jl ||
|
|
(ya(a),
|
|
(o[(a + 5) | 0] = 0),
|
|
(Vk = q[(_k + 64) >> 2]),
|
|
(dl = q[Vk >> 2]),
|
|
(al = q[(_k + 76) >> 2]),
|
|
(il = r[(a + 4) | 0]));
|
|
f: {
|
|
if ((a = 0) < (0 | dl)) {
|
|
for (;;) {
|
|
if (63 < ia(((a << 6) + al) | 0) >>> 0)
|
|
break f;
|
|
if ((0 | dl) == (0 | (a = (a + 1) | 0)))
|
|
break;
|
|
}
|
|
if (
|
|
((Wk = (Vk + 48) | 0),
|
|
(Xk = 0) < (0 | (a = q[Vk >> 2])))
|
|
) {
|
|
for (
|
|
Zk = q[(Vk + 48) >> 2],
|
|
Yk = q[(_k + 80) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(al = q[(Yk + (Xk << 2)) >> 2])) <
|
|
0) |
|
|
((0 | Zk) <= (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
gl = (Vk + 24) | 0,
|
|
Zk = q[(Vk + 24) >> 2],
|
|
$k = q[(_k + 88) >> 2],
|
|
dl = q[(_k + 84) >> 2],
|
|
Xk = 0;;
|
|
|
|
) {
|
|
if (
|
|
(Yk = q[((al = Xk << 2) + $k) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Yk) < 0) |
|
|
((0 | Zk) < (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (al = q[(al + dl) >> 2])) <
|
|
0) |
|
|
((0 | Zk) <= (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
((Yk = (Yk + al) | 0) >>> 31) |
|
|
((0 | Zk) < (0 | Yk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = 0, Zk = q[(_k + 92) >> 2];;
|
|
|
|
) {
|
|
if (1 < t[(Zk + (Xk << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = 0, Zk = q[(_k + 96) >> 2];;
|
|
|
|
) {
|
|
if (1 < t[(Zk + (Xk << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = 0, Zk = q[(_k + 100) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(Yk = q[(Zk + (Xk << 2)) >> 2])) <
|
|
-1) |
|
|
((0 | a) <= (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
} else gl = (Vk + 24) | 0;
|
|
} else
|
|
(gl = (Vk + 24) | 0),
|
|
(Wk = (Vk + 48) | 0);
|
|
if (
|
|
(a = 0) <
|
|
(0 | (Xk = q[(Vk + 4) >> 2]))
|
|
) {
|
|
for (Zk = q[(_k + 108) >> 2];;) {
|
|
if (63 < ia((Zk + (a << 6)) | 0) >>> 0)
|
|
break f;
|
|
if ((0 | Xk) == (0 | (a = (a + 1) | 0)))
|
|
break;
|
|
}
|
|
if (
|
|
(($k =
|
|
((Zk = q[(Vk + 48) >> 2]) + -1) | 0), !(
|
|
((Xk = 0) | (a = q[(Vk + 4) >> 2])) <=
|
|
0
|
|
))
|
|
) {
|
|
for (Yk = q[(_k + 112) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(al = q[(Yk + (Xk << 2)) >> 2])) <
|
|
0) |
|
|
((0 | Zk) <= (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = 0, Zk = q[(_k + 116) >> 2];;
|
|
|
|
) {
|
|
if (1 < t[(Zk + (Xk << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = 0, Zk = q[(_k + 120) >> 2];;
|
|
|
|
) {
|
|
if (1 < t[(Zk + (Xk << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Zk = q[Vk >> 2],
|
|
Xk = 0,
|
|
Yk = q[(_k + 124) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(al = q[(Yk + (Xk << 2)) >> 2])) <
|
|
-1) |
|
|
((0 | Zk) <= (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = 0, Zk = q[(_k + 128) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(Yk = q[(Zk + (Xk << 2)) >> 2])) <
|
|
-1) |
|
|
((0 | a) <= (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = 0, Zk = q[(_k + 132) >> 2];;
|
|
|
|
) {
|
|
if (1 < t[(Zk + (Xk << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Yk = (Vk + 8) | 0,
|
|
al = (Vk + 12) | 0,
|
|
dl = q[(_k + 136) >> 2],
|
|
Xk = 0;;
|
|
|
|
) {
|
|
if (
|
|
1 <
|
|
(fl =
|
|
q[((el = Xk << 2) + Zk) >> 2]) >>>
|
|
0
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (el = q[(dl + el) >> 2])) <
|
|
0) |
|
|
((0 | el) >=
|
|
q[((fl - 1) | 0 ? Yk : al) >> 2])
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
} else $k = (q[Wk >> 2] + -1) | 0;
|
|
if (
|
|
(a = 0) <
|
|
(0 | (Xk = q[(Vk + 8) >> 2]))
|
|
) {
|
|
for (Zk = q[(_k + 140) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(Yk = q[(Zk + (a << 2)) >> 2])) <
|
|
0) |
|
|
((0 | $k) < (0 | Yk))
|
|
)
|
|
break f;
|
|
if ((0 | Xk) == (0 | (a = (a + 1) | 0)))
|
|
break;
|
|
}
|
|
for (
|
|
ll = (Vk + 28) | 0,
|
|
Zk = q[(Vk + 28) >> 2],
|
|
dl = q[(_k + 148) >> 2],
|
|
el = q[(_k + 144) >> 2],
|
|
a = 0;;
|
|
|
|
) {
|
|
if (
|
|
(Yk = q[((al = a << 2) + dl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Yk) < 0) |
|
|
((0 | Zk) < (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (al = q[(al + el) >> 2])) <
|
|
0) |
|
|
((0 | Zk) <= (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
((Yk = (Yk + al) | 0) >>> 31) |
|
|
((0 | Zk) < (0 | Yk))
|
|
)
|
|
break f;
|
|
}
|
|
if ((0 | Xk) == (0 | (a = (a + 1) | 0)))
|
|
break;
|
|
}
|
|
for (
|
|
a = 0,
|
|
Yk = q[(_k + 156) >> 2],
|
|
al = q[(_k + 164) >> 2],
|
|
dl = q[(_k + 160) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
(0 |
|
|
(el =
|
|
q[((Zk = a << 2) + dl) >> 2])) <
|
|
1
|
|
)
|
|
break f;
|
|
if ((0 | (fl = q[(Zk + al) >> 2])) < 1)
|
|
break f;
|
|
if (
|
|
((0 | (Zk = q[(Yk + Zk) >> 2])) < 1) |
|
|
((0 | Zk) !=
|
|
(0 | w((fl + 1) | 0, (el + 1) | 0)))
|
|
)
|
|
break f;
|
|
if ((0 | Xk) == (0 | (a = (a + 1) | 0)))
|
|
break;
|
|
}
|
|
} else ll = (Vk + 28) | 0;
|
|
if (
|
|
(a = 0) <
|
|
(0 | (Yk = q[(Vk + 12) >> 2]))
|
|
) {
|
|
for (Xk = q[(_k + 172) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(Zk = q[(Xk + (a << 2)) >> 2])) <
|
|
0) |
|
|
((0 | $k) < (0 | Zk))
|
|
)
|
|
break f;
|
|
if ((0 | Yk) == (0 | (a = (a + 1) | 0)))
|
|
break;
|
|
}
|
|
for (
|
|
bl = (Vk + 32) | 0,
|
|
Xk = q[(Vk + 32) >> 2],
|
|
$k = q[(_k + 180) >> 2],
|
|
dl = q[(_k + 176) >> 2],
|
|
a = 0;;
|
|
|
|
) {
|
|
if (
|
|
(Zk = q[((al = a << 2) + $k) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Zk) < 0) |
|
|
((0 | Xk) < (0 | Zk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (al = q[(al + dl) >> 2])) <
|
|
0) |
|
|
((0 | Xk) <= (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
((Zk = (Zk + al) | 0) >>> 31) |
|
|
((0 | Xk) < (0 | Zk))
|
|
)
|
|
break f;
|
|
}
|
|
if ((0 | Yk) == (0 | (a = (a + 1) | 0)))
|
|
break;
|
|
}
|
|
} else bl = (Vk + 32) | 0;
|
|
Zk = (Vk + 16) | 0;
|
|
m: {
|
|
n: {
|
|
if (!(
|
|
((a = 0) |
|
|
(Xk = q[(Vk + 16) >> 2])) <=
|
|
0
|
|
)) {
|
|
for (Yk = q[(_k + 208) >> 2];;) {
|
|
if (
|
|
63 <
|
|
ia((Yk + (a << 6)) | 0) >>> 0
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | Xk) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if (!(
|
|
((Xk = 0) | (a = q[Zk >> 2])) <=
|
|
0
|
|
)) {
|
|
for (
|
|
Yk = q[Wk >> 2],
|
|
al = q[(_k + 212) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
($k =
|
|
q[(al + (Xk << 2)) >> 2])) <
|
|
0) |
|
|
((0 | Yk) <= (0 | $k))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
nl = (Vk + 36) | 0,
|
|
Yk = q[(Vk + 36) >> 2],
|
|
dl = q[(_k + 220) >> 2],
|
|
el = q[(_k + 216) >> 2],
|
|
Xk = 0;;
|
|
|
|
) {
|
|
if (
|
|
(al =
|
|
q[(($k = Xk << 2) + dl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | al) < 0) |
|
|
((0 | Yk) < (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
($k = q[($k + el) >> 2])) <
|
|
0) |
|
|
((0 | Yk) <= (0 | $k))
|
|
)
|
|
break f;
|
|
if (
|
|
((al = (al + $k) | 0) >>>
|
|
31) |
|
|
((0 | Yk) < (0 | al))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = 0, Yk = q[(_k + 228) >> 2];;
|
|
|
|
) {
|
|
if (1 < t[(Yk + (Xk << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = 0, Yk = q[(_k + 232) >> 2];;
|
|
|
|
) {
|
|
if (1 < t[(Yk + (Xk << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Yk = q[Vk >> 2],
|
|
Xk = 0,
|
|
al = q[(_k + 236) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
($k =
|
|
q[(al + (Xk << 2)) >> 2])) <
|
|
-1) |
|
|
((0 | Yk) <= (0 | $k))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Yk = q[(Vk + 4) >> 2],
|
|
Xk = 0,
|
|
al = q[(_k + 240) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
($k =
|
|
q[(al + (Xk << 2)) >> 2])) <
|
|
-1) |
|
|
((0 | Yk) <= (0 | $k))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Yk = q[(_k + 244) >> 2], Xk = 0;;
|
|
|
|
) {
|
|
if (q[(Yk + (Xk << 2)) >> 2] < 0)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
break n;
|
|
}
|
|
}
|
|
(al = (Vk + 68) | 0),
|
|
(nl = (Vk + 36) | 0);
|
|
break m;
|
|
}
|
|
for (
|
|
Yk = q[(_k + 252) >> 2], Xk = 0;;
|
|
|
|
) {
|
|
if (q[(Yk + (Xk << 2)) >> 2] < 0)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
al = q[(Vk + 60) >> 2],
|
|
Xk = 0,
|
|
$k = q[(_k + 256) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((dl =
|
|
(q[((dl = Xk << 2) + $k) >> 2] +
|
|
(q[(Yk + dl) >> 2] << 1)) |
|
|
0) >>>
|
|
31) |
|
|
((0 | al) < (0 | dl))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Yk = q[(Vk + 64) >> 2],
|
|
dl = q[(_k + 264) >> 2],
|
|
el = q[(_k + 260) >> 2],
|
|
Xk = 0;;
|
|
|
|
) {
|
|
if (
|
|
(al = q[(($k = Xk << 2) + dl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | al) < 0) |
|
|
((0 | Yk) < (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | ($k = q[($k + el) >> 2])) <
|
|
0) |
|
|
((0 | Yk) <= (0 | $k))
|
|
)
|
|
break f;
|
|
if (
|
|
((al = (al + $k) | 0) >>> 31) |
|
|
((0 | Yk) < (0 | al))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
al = (Vk + 68) | 0,
|
|
Yk = q[(Vk + 68) >> 2],
|
|
el = q[(_k + 272) >> 2],
|
|
fl = q[(_k + 268) >> 2],
|
|
Xk = 0;;
|
|
|
|
) {
|
|
if (
|
|
($k = q[((dl = Xk << 2) + el) >> 2])
|
|
) {
|
|
if (
|
|
((0 | $k) < 0) |
|
|
((0 | Yk) < (0 | $k))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (dl = q[(dl + fl) >> 2])) <
|
|
0) |
|
|
((0 | Yk) <= (0 | dl))
|
|
)
|
|
break f;
|
|
if (
|
|
(($k = ($k + dl) | 0) >>> 31) |
|
|
((0 | Yk) < (0 | $k))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
p: {
|
|
q: {
|
|
if (!(
|
|
((a = 0) |
|
|
(Xk = q[(Vk + 20) >> 2])) <=
|
|
0
|
|
)) {
|
|
for (Yk = q[(_k + 280) >> 2];;) {
|
|
if (
|
|
63 <
|
|
ia((Yk + (a << 6)) | 0) >>> 0
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | Xk) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if (!(
|
|
((a = 0) |
|
|
(Xk = q[(Vk + 20) >> 2])) <=
|
|
0
|
|
)) {
|
|
for (Yk = q[(_k + 296) >> 2];;) {
|
|
if (1 < t[(Yk + (a << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | Xk) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Yk = q[(_k + 300) >> 2], a = 0;;
|
|
|
|
) {
|
|
if (q[(Yk + (a << 2)) >> 2] < 0)
|
|
break f;
|
|
if (
|
|
(0 | Xk) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
break q;
|
|
}
|
|
}
|
|
a = q[(Vk + 52) >> 2];
|
|
break p;
|
|
}
|
|
for (
|
|
a = q[(Vk + 52) >> 2],
|
|
el = q[(_k + 312) >> 2],
|
|
fl = q[(_k + 308) >> 2],
|
|
$k = 0;;
|
|
|
|
) {
|
|
if (
|
|
(Yk = q[((dl = $k << 2) + el) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Yk) < 0) |
|
|
((0 | a) < (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (dl = q[(dl + fl) >> 2])) <
|
|
0) |
|
|
((0 | a) <= (0 | dl))
|
|
)
|
|
break f;
|
|
if (
|
|
((Yk = (Yk + dl) | 0) >>> 31) |
|
|
((0 | a) < (0 | Yk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | Xk) ==
|
|
(0 | ($k = ($k + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (
|
|
((Yk = q[(Vk + 40) >> 2]),
|
|
(Xk = 0) < (0 | ($k = q[(Vk + 8) >> 2])))
|
|
)
|
|
for (
|
|
dl = q[(_k + 344) >> 2],
|
|
el = q[(_k + 156) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((fl =
|
|
(q[((fl = Xk << 2) + dl) >> 2] +
|
|
(q[(el + fl) >> 2] << 1)) |
|
|
0) >>>
|
|
31) |
|
|
((0 | Yk) < (0 | fl))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | $k) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if ((Xk = 0) < (0 | ($k = q[bl >> 2]))) {
|
|
for (dl = q[(_k + 376) >> 2];;) {
|
|
if (1 < t[(dl + (Xk << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | $k) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = 0, dl = q[(_k + 380) >> 2];;
|
|
|
|
) {
|
|
if (1 < t[(dl + (Xk << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | $k) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if ((Xk = 0) < (0 | ($k = q[Zk >> 2])))
|
|
for (
|
|
dl = q[(_k + 400) >> 2],
|
|
el = q[(_k + 252) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((fl =
|
|
(q[((fl = Xk << 2) + dl) >> 2] +
|
|
(q[(el + fl) >> 2] << 1)) |
|
|
0) >>>
|
|
31) |
|
|
((0 | Yk) < (0 | fl))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | $k) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if (
|
|
(Xk = 0) <
|
|
(0 | (Yk = q[(Vk + 44) >> 2]))
|
|
)
|
|
for (dl = q[(_k + 424) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(el = q[(dl + (Xk << 2)) >> 2])) <
|
|
0) |
|
|
((0 | a) <= (0 | el))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | Yk) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if (1 <= (0 | (el = q[Wk >> 2])))
|
|
for (
|
|
Xk = 0,
|
|
fl = q[(_k + 432) >> 2],
|
|
cl = q[(_k + 428) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
(Wk = q[((dl = Xk << 2) + fl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Wk) < 0) |
|
|
((0 | Yk) < (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (dl = q[(cl + dl) >> 2])) <
|
|
0) |
|
|
((0 | Yk) <= (0 | dl))
|
|
)
|
|
break f;
|
|
if (
|
|
((Wk = (Wk + dl) | 0) >>> 31) |
|
|
((0 | Yk) < (0 | Wk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | el) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if (1 <= (0 | a))
|
|
for (
|
|
Yk = q[(Vk + 56) >> 2],
|
|
Xk = 0,
|
|
el = q[(_k + 420) >> 2],
|
|
fl = q[(_k + 416) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
(Wk = q[((dl = Xk << 2) + el) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Wk) < 0) |
|
|
((0 | Yk) < (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (dl = q[(dl + fl) >> 2])) <
|
|
0) |
|
|
((0 | Yk) <= (0 | dl))
|
|
)
|
|
break f;
|
|
if (
|
|
((Wk = (Wk + dl) | 0) >>> 31) |
|
|
((0 | Yk) < (0 | Wk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | (Xk = (Xk + 1) | 0)) ==
|
|
(0 | a)
|
|
)
|
|
break;
|
|
}
|
|
if ((a = 0) < (0 | (Xk = q[al >> 2])))
|
|
for (Yk = q[(_k + 564) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(al = q[(Yk + (a << 2)) >> 2])) <
|
|
-1) |
|
|
((0 | $k) <= (0 | al))
|
|
)
|
|
break f;
|
|
if ((0 | Xk) == (0 | (a = (a + 1) | 0)))
|
|
break;
|
|
}
|
|
if (
|
|
((a = q[(Vk + 76) >> 2]),
|
|
1 <= (0 | (al = q[(Vk + 72) >> 2])))
|
|
)
|
|
for (
|
|
Xk = 0,
|
|
$k = q[(_k + 572) >> 2],
|
|
dl = q[(_k + 568) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
(Yk = q[((Wk = Xk << 2) + $k) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Yk) < 0) |
|
|
((0 | a) < (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (Wk = q[(Wk + dl) >> 2])) <
|
|
0) |
|
|
((0 | a) <= (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
((Yk = (Wk + Yk) | 0) >>> 31) |
|
|
((0 | a) < (0 | Yk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | al) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if ((Xk = 0) < (0 | a)) {
|
|
for (Yk = q[(_k + 588) >> 2];;) {
|
|
if (1 < t[(Yk + (Xk << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Wk = q[(_k + 592) >> 2], Xk = 0;;
|
|
|
|
) {
|
|
if (
|
|
1 <
|
|
(dl =
|
|
q[(($k = Xk << 2) + Yk) >> 2]) >>>
|
|
0
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | ($k = q[(Wk + $k) >> 2])) < 0) |
|
|
((0 | $k) >=
|
|
q[((dl - 1) | 0 ? Zk : Vk) >> 2])
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = 0, Yk = q[(_k + 596) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(Wk = q[(Yk + (Xk << 2)) >> 2])) <
|
|
-1) |
|
|
((0 | al) <= (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | a) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
s: {
|
|
if (!(
|
|
((a = 0) |
|
|
($k = q[(Vk + 80) >> 2])) <=
|
|
0
|
|
)) {
|
|
for (Xk = q[(_k + 604) >> 2];;) {
|
|
if (
|
|
63 <
|
|
ia((Xk + (a << 6)) | 0) >>> 0
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | $k) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if (!(
|
|
((a = 0) |
|
|
($k = q[(Vk + 80) >> 2])) <=
|
|
0
|
|
)) {
|
|
for (
|
|
Xk = q[(Vk + 48) >> 2],
|
|
Yk = q[(_k + 608) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(al =
|
|
q[(Yk + (a << 2)) >> 2])) <
|
|
0) |
|
|
((0 | Xk) <= (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | $k) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
el = q[(Vk + 88) >> 2],
|
|
al = q[(_k + 616) >> 2],
|
|
Wk = q[(_k + 612) >> 2],
|
|
a = 0;;
|
|
|
|
) {
|
|
if (
|
|
(Xk =
|
|
q[((Yk = a << 2) + al) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Xk) < 0) |
|
|
((0 | el) < (0 | Xk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(Yk = q[(Wk + Yk) >> 2])) <
|
|
0) |
|
|
((0 | el) <= (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
((Xk = (Xk + Yk) | 0) >>> 31) |
|
|
((0 | el) < (0 | Xk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | $k) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Zk = q[Zk >> 2],
|
|
al = q[(_k + 620) >> 2],
|
|
a = 0;;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(Xk =
|
|
q[(al + (a << 2)) >> 2])) <
|
|
0) |
|
|
((0 | Zk) <= (0 | Xk))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | $k) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Wk = q[(_k + 624) >> 2], a = 0;;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(Xk =
|
|
q[(Wk + (a << 2)) >> 2])) <
|
|
0) |
|
|
((0 | Zk) <= (0 | Xk))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | $k) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Xk = q[(Vk + 84) >> 2],
|
|
dl = q[(_k + 632) >> 2],
|
|
fl = q[(_k + 628) >> 2],
|
|
a = 0;;
|
|
|
|
) {
|
|
if (
|
|
(Yk =
|
|
q[((cl = a << 2) + dl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Yk) < 0) |
|
|
((0 | Xk) < (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(cl = q[(cl + fl) >> 2])) <
|
|
0) |
|
|
((0 | Xk) <= (0 | cl))
|
|
)
|
|
break f;
|
|
if (
|
|
((Yk = (Yk + cl) | 0) >>> 31) |
|
|
((0 | Xk) < (0 | Yk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | $k) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
hl = q[(_k + 640) >> 2],
|
|
Xk = q[(_k + 252) >> 2],
|
|
Yk = 0;;
|
|
|
|
) {
|
|
if (
|
|
0 <
|
|
(0 |
|
|
(jl =
|
|
q[((a = Yk << 2) + dl) >> 2]))
|
|
)
|
|
for (
|
|
cl =
|
|
(hl +
|
|
(q[(a + fl) >> 2] << 1)) |
|
|
0,
|
|
ol =
|
|
q[
|
|
(Xk +
|
|
(q[(a + Wk) >> 2] <<
|
|
2)) >>
|
|
2
|
|
],
|
|
kl =
|
|
q[
|
|
(Xk +
|
|
(q[(a + al) >> 2] <<
|
|
2)) >>
|
|
2
|
|
],
|
|
a = 0;;
|
|
|
|
) {
|
|
if (
|
|
((0 | ol) <=
|
|
s[
|
|
(cl +
|
|
(2 | (ml = a << 1))) >>
|
|
1
|
|
]) |
|
|
((0 | kl) <=
|
|
s[(cl + ml) >> 1])
|
|
)
|
|
break f;
|
|
if (!(
|
|
(0 | (a = (a + 2) | 0)) <
|
|
(0 | jl)
|
|
))
|
|
break;
|
|
}
|
|
if (
|
|
(0 | $k) ==
|
|
(0 | (Yk = (Yk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
break s;
|
|
}
|
|
}
|
|
(Zk = q[(Vk + 16) >> 2]),
|
|
(el = q[(Vk + 88) >> 2]);
|
|
}
|
|
if (!((255 & il) >>> 0 < 2)) {
|
|
if (
|
|
(a = 0) <
|
|
(0 | (dl = q[(Vk + 8) >> 2]))
|
|
)
|
|
for (Xk = q[(_k + 168) >> 2];;) {
|
|
if (1 < t[(Xk + (a << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | dl) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if (!((255 & il) >>> 0 < 4)) {
|
|
if (
|
|
((al = q[(Vk + 56) >> 2]),
|
|
1 <= (0 | (fl = q[(Vk + 20) >> 2])))
|
|
)
|
|
for (
|
|
Wk = q[(_k + 332) >> 2],
|
|
cl = q[(_k + 328) >> 2],
|
|
a = 0;;
|
|
|
|
) {
|
|
if (
|
|
(Xk =
|
|
q[((Yk = a << 2) + Wk) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Xk) < 0) |
|
|
((0 | al) < (0 | Xk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(Yk = q[(Yk + cl) >> 2])) <
|
|
0) |
|
|
((0 | al) <= (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
((Xk = (Xk + Yk) | 0) >>> 31) |
|
|
((0 | al) < (0 | Xk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | fl) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if (
|
|
(0 | (a = q[(Vk + 92) >> 2])) !=
|
|
q[(Vk + 96) >> 2]
|
|
)
|
|
break f;
|
|
if (1 <= (0 | dl))
|
|
for (
|
|
cl = q[(_k + 152) >> 2],
|
|
Xk = 0,
|
|
hl = q[(_k + 148) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
(Yk =
|
|
q[((Wk = Xk << 2) + hl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Yk) < 0) |
|
|
((0 | a) < (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(Wk = q[(Wk + cl) >> 2])) <
|
|
0) |
|
|
((0 | a) <= (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
((Yk = (Wk + Yk) | 0) >>> 31) |
|
|
((0 | a) < (0 | Yk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | dl) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if (1 <= (0 | (ol = q[(Vk + 12) >> 2])))
|
|
for (
|
|
cl = q[(_k + 184) >> 2],
|
|
Xk = 0,
|
|
hl = q[(_k + 180) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
(Yk =
|
|
q[((Wk = Xk << 2) + hl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Yk) < 0) |
|
|
((0 | a) < (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(Wk = q[(Wk + cl) >> 2])) <
|
|
0) |
|
|
((0 | a) <= (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
((Yk = (Wk + Yk) | 0) >>> 31) |
|
|
((0 | a) < (0 | Yk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | ol) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if (1 <= (0 | Zk))
|
|
for (
|
|
cl = q[(_k + 224) >> 2],
|
|
Xk = 0,
|
|
hl = q[(_k + 220) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
(Yk =
|
|
q[((Wk = Xk << 2) + hl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Yk) < 0) |
|
|
((0 | a) < (0 | Yk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(Wk = q[(Wk + cl) >> 2])) <
|
|
0) |
|
|
((0 | a) <= (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
((Yk = (Wk + Yk) | 0) >>> 31) |
|
|
((0 | a) < (0 | Yk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | Zk) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
if ((Xk = 0) < (0 | fl)) {
|
|
for (Yk = q[(_k + 304) >> 2];;) {
|
|
if (1 < t[(Yk + (Xk << 2)) >> 2])
|
|
break f;
|
|
if (
|
|
(0 | fl) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Yk = q[(Vk + 100) >> 2],
|
|
hl = q[(_k + 320) >> 2],
|
|
jl = q[(_k + 316) >> 2],
|
|
Xk = 0;;
|
|
|
|
) {
|
|
if (
|
|
(Wk =
|
|
q[((cl = Xk << 2) + hl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Wk) < 0) |
|
|
((0 | Yk) < (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(cl = q[(cl + jl) >> 2])) <
|
|
0) |
|
|
((0 | Yk) <= (0 | cl))
|
|
)
|
|
break f;
|
|
if (
|
|
((Wk = (Wk + cl) | 0) >>> 31) |
|
|
((0 | Yk) < (0 | Wk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | fl) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
} else Yk = q[(Vk + 100) >> 2];
|
|
if (1 <= (0 | Yk)) {
|
|
for (
|
|
cl = q[(_k + 440) >> 2],
|
|
Xk = 0,
|
|
jl = q[(_k + 436) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
(Wk =
|
|
q[((hl = Xk << 2) + cl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | Wk) < 0) |
|
|
((0 | al) < (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(hl = q[(hl + jl) >> 2])) <
|
|
0) |
|
|
((0 | al) <= (0 | hl))
|
|
)
|
|
break f;
|
|
if (
|
|
((Wk = (Wk + hl) | 0) >>> 31) |
|
|
((0 | al) < (0 | Wk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | Yk) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
al = q[(_k + 444) >> 2], Xk = 0;;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(hl =
|
|
q[
|
|
((Wk = Xk << 2) + al) >> 2
|
|
])) <
|
|
0) |
|
|
((0 | hl) >= q[(Wk + cl) >> 2])
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | Yk) ==
|
|
(0 | (Xk = (Xk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (
|
|
(al = 0) <
|
|
(0 | (Xk = q[(Vk + 104) >> 2]))
|
|
) {
|
|
for (Wk = q[(_k + 448) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(cl =
|
|
q[(Wk + (al << 2)) >> 2])) <
|
|
0) |
|
|
((0 | Yk) <= (0 | cl))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | Xk) ==
|
|
(0 | (al = (al + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Wk = q[(Vk + 116) >> 2],
|
|
hl = q[(_k + 464) >> 2],
|
|
jl = q[(_k + 460) >> 2],
|
|
Yk = 0;;
|
|
|
|
) {
|
|
if (
|
|
(al =
|
|
q[((cl = Yk << 2) + hl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | al) < 0) |
|
|
((0 | Wk) < (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(cl = q[(cl + jl) >> 2])) <
|
|
0) |
|
|
((0 | Wk) <= (0 | cl))
|
|
)
|
|
break f;
|
|
if (
|
|
((al = (al + cl) | 0) >>> 31) |
|
|
((0 | Wk) < (0 | al))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | Xk) ==
|
|
(0 | (Yk = (Yk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
} else Wk = q[(Vk + 116) >> 2];
|
|
if (
|
|
(Yk = 0) <
|
|
(0 | (cl = q[(Vk + 108) >> 2]))
|
|
) {
|
|
for (al = q[(_k + 480) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(hl =
|
|
q[(al + (Yk << 2)) >> 2])) <
|
|
0) |
|
|
((0 | dl) <= (0 | hl))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | cl) ==
|
|
(0 | (Yk = (Yk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
hl = q[(_k + 488) >> 2],
|
|
kl = q[(_k + 484) >> 2],
|
|
Yk = 0;;
|
|
|
|
) {
|
|
if (
|
|
(al =
|
|
q[((dl = Yk << 2) + hl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | al) < 0) |
|
|
((0 | Xk) < (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(dl = q[(dl + kl) >> 2])) <
|
|
0) |
|
|
((0 | Xk) <= (0 | dl))
|
|
)
|
|
break f;
|
|
if (
|
|
((al = (al + dl) | 0) >>> 31) |
|
|
((0 | Xk) < (0 | al))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | cl) ==
|
|
(0 | (Yk = (Yk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
hl = q[ll >> 2],
|
|
Yk = q[(_k + 456) >> 2],
|
|
dl = q[(_k + 452) >> 2],
|
|
al = 0;;
|
|
|
|
) {
|
|
if (
|
|
((ml =
|
|
q[(kl + (al << 2)) >> 2] << 2),
|
|
(jl = q[(ml + Yk) >> 2]))
|
|
) {
|
|
if (
|
|
((0 | jl) < 0) |
|
|
((0 | hl) < (0 | jl))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(ml = q[(dl + ml) >> 2])) <
|
|
0) |
|
|
((0 | hl) <= (0 | ml))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (jl = (jl + ml) | 0)) <
|
|
0) |
|
|
((0 | hl) < (0 | jl))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | cl) ==
|
|
(0 | (al = (al + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
} else
|
|
(Yk = q[(_k + 456) >> 2]),
|
|
(dl = q[(_k + 452) >> 2]);
|
|
if (
|
|
(al = 0) <
|
|
(0 | (cl = q[(Vk + 112) >> 2]))
|
|
) {
|
|
for (hl = q[(_k + 504) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(jl =
|
|
q[(hl + (al << 2)) >> 2])) <
|
|
0) |
|
|
((0 | Zk) <= (0 | jl))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | cl) ==
|
|
(0 | (al = (al + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
kl = q[(_k + 512) >> 2],
|
|
jl = q[(_k + 508) >> 2],
|
|
Zk = 0;;
|
|
|
|
) {
|
|
if (
|
|
(al =
|
|
q[((hl = Zk << 2) + kl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | al) < 0) |
|
|
((0 | Xk) < (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(hl = q[(hl + jl) >> 2])) <
|
|
0) |
|
|
((0 | Xk) <= (0 | hl))
|
|
)
|
|
break f;
|
|
if (
|
|
((al = (al + hl) | 0) >>> 31) |
|
|
((0 | Xk) < (0 | al))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | cl) ==
|
|
(0 | (Zk = (Zk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (al = q[nl >> 2], Zk = 0;;) {
|
|
if (
|
|
((kl =
|
|
q[(jl + (Zk << 2)) >> 2] << 2),
|
|
(hl = q[(kl + Yk) >> 2]))
|
|
) {
|
|
if (
|
|
((0 | hl) < 0) |
|
|
((0 | al) < (0 | hl))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(kl = q[(dl + kl) >> 2])) <
|
|
0) |
|
|
((0 | al) <= (0 | kl))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (hl = (hl + kl) | 0)) <
|
|
0) |
|
|
((0 | al) < (0 | hl))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | cl) ==
|
|
(0 | (Zk = (Zk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (
|
|
((al = q[(Vk + 120) >> 2]),
|
|
(Zk = 0) < (0 | Wk))
|
|
)
|
|
for (cl = q[(_k + 528) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(hl =
|
|
q[(cl + (Zk << 2)) >> 2])) <
|
|
0) |
|
|
((0 | al) <= (0 | hl))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | (Zk = (Zk + 1) | 0)) ==
|
|
(0 | Wk)
|
|
)
|
|
break;
|
|
}
|
|
if ((Zk = 0) < (0 | al)) {
|
|
for (Wk = q[(_k + 532) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(cl =
|
|
q[(Wk + (Zk << 2)) >> 2])) <
|
|
-1) |
|
|
((0 | fl) <= (0 | cl))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | al) ==
|
|
(0 | (Zk = (Zk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Wk = q[(Vk + 124) >> 2],
|
|
hl = q[(_k + 540) >> 2],
|
|
jl = q[(_k + 536) >> 2],
|
|
Zk = 0;;
|
|
|
|
) {
|
|
if (
|
|
(fl =
|
|
q[((cl = Zk << 2) + hl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | fl) < 0) |
|
|
((0 | Wk) < (0 | fl))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(cl = q[(cl + jl) >> 2])) <
|
|
0) |
|
|
((0 | Wk) <= (0 | cl))
|
|
)
|
|
break f;
|
|
if (
|
|
((fl = (cl + fl) | 0) >>> 31) |
|
|
((0 | Wk) < (0 | fl))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | al) ==
|
|
(0 | (Zk = (Zk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (!((255 & il) >>> 0 < 5)) {
|
|
if (
|
|
(Zk = 0) <
|
|
(0 | (il = q[ll >> 2]))
|
|
) {
|
|
for (al = q[(_k + 348) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(Wk =
|
|
q[(al + (Zk << 2)) >> 2])) <
|
|
0) |
|
|
((0 | a) < (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | il) ==
|
|
(0 | (Zk = (Zk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
al = q[(_k + 352) >> 2], Zk = 0;;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(Wk =
|
|
q[(al + (Zk << 2)) >> 2])) <
|
|
0) |
|
|
((0 | a) < (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | il) ==
|
|
(0 | (Zk = (Zk + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (
|
|
(il = 0) <
|
|
(0 | (Zk = q[bl >> 2]))
|
|
) {
|
|
for (al = q[(_k + 384) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(Wk =
|
|
q[(al + (il << 2)) >> 2])) <
|
|
0) |
|
|
((0 | a) < (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | Zk) ==
|
|
(0 | (il = (il + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
al = q[(_k + 388) >> 2], il = 0;;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(Wk =
|
|
q[(al + (il << 2)) >> 2])) <
|
|
0) |
|
|
((0 | a) < (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | Zk) ==
|
|
(0 | (il = (il + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (
|
|
(il = 0) <
|
|
(0 | (al = q[nl >> 2]))
|
|
) {
|
|
for (Wk = q[(_k + 404) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(fl =
|
|
q[(Wk + (il << 2)) >> 2])) <
|
|
0) |
|
|
((0 | a) < (0 | fl))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | al) ==
|
|
(0 | (il = (il + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
Wk = q[(_k + 408) >> 2], il = 0;;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(fl =
|
|
q[(Wk + (il << 2)) >> 2])) <
|
|
0) |
|
|
((0 | a) < (0 | fl))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | al) ==
|
|
(0 | (il = (il + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (
|
|
(a = 0) <
|
|
(0 | (il = q[(Vk + 128) >> 2]))
|
|
) {
|
|
for (
|
|
al = q[Vk >> 2],
|
|
Wk = q[(_k + 468) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((0 |
|
|
(fl =
|
|
q[(Wk + (a << 2)) >> 2])) <
|
|
0) |
|
|
((0 | al) <= (0 | fl))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | il) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
ll = q[(_k + 476) >> 2],
|
|
fl = q[(_k + 472) >> 2],
|
|
a = 0;;
|
|
|
|
) {
|
|
if (
|
|
(al =
|
|
q[((Wk = a << 2) + ll) >> 2])
|
|
) {
|
|
if (
|
|
((0 | al) < 0) |
|
|
((0 | Xk) < (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(Wk = q[(Wk + fl) >> 2])) <
|
|
0) |
|
|
((0 | Xk) <= (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
((al = (Wk + al) | 0) >>>
|
|
31) |
|
|
((0 | Xk) < (0 | al))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | il) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (al = q[gl >> 2], a = 0;;) {
|
|
if (
|
|
((gl =
|
|
q[(fl + (a << 2)) >> 2] << 2),
|
|
(Wk = q[(gl + Yk) >> 2]))
|
|
) {
|
|
if (
|
|
((0 | Wk) < 0) |
|
|
((0 | al) < (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(gl = q[(dl + gl) >> 2])) <
|
|
0) |
|
|
((0 | al) <= (0 | gl))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (Wk = (Wk + gl) | 0)) <
|
|
0) |
|
|
((0 | al) < (0 | Wk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | il) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (
|
|
(a = 0) <
|
|
(0 | (il = q[(Vk + 132) >> 2]))
|
|
) {
|
|
for (al = q[(_k + 492) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(Wk =
|
|
q[(al + (a << 2)) >> 2])) <
|
|
0) |
|
|
((0 | ol) <= (0 | Wk))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | il) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
gl = q[(_k + 500) >> 2],
|
|
Wk = q[(_k + 496) >> 2],
|
|
a = 0;;
|
|
|
|
) {
|
|
if (
|
|
(al =
|
|
q[((fl = a << 2) + gl) >> 2])
|
|
) {
|
|
if (
|
|
((0 | al) < 0) |
|
|
((0 | Xk) < (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(fl = q[(Wk + fl) >> 2])) <
|
|
0) |
|
|
((0 | Xk) <= (0 | fl))
|
|
)
|
|
break f;
|
|
if (
|
|
((al = (al + fl) | 0) >>>
|
|
31) |
|
|
((0 | Xk) < (0 | al))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | il) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (a = 0;;) {
|
|
if (
|
|
((fl =
|
|
q[(Wk + (a << 2)) >> 2] << 2),
|
|
(al = q[(fl + Yk) >> 2]))
|
|
) {
|
|
if (
|
|
((0 | al) < 0) |
|
|
((0 | Zk) < (0 | al))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(fl = q[(dl + fl) >> 2])) <
|
|
0) |
|
|
((0 | Zk) <= (0 | fl))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (al = (al + fl) | 0)) <
|
|
0) |
|
|
((0 | Zk) < (0 | al))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | il) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (!(
|
|
((a = 0) |
|
|
(Vk = q[(Vk + 136) >> 2])) <=
|
|
0
|
|
)) {
|
|
for (Zk = q[(_k + 516) >> 2];;) {
|
|
if (
|
|
((0 |
|
|
(il =
|
|
q[(Zk + (a << 2)) >> 2])) <
|
|
0) |
|
|
((0 | $k) <= (0 | il))
|
|
)
|
|
break f;
|
|
if (
|
|
(0 | Vk) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (
|
|
al = q[(_k + 524) >> 2],
|
|
Zk = q[(_k + 520) >> 2],
|
|
a = 0;;
|
|
|
|
) {
|
|
if (
|
|
(_k =
|
|
q[((il = a << 2) + al) >> 2])
|
|
) {
|
|
if (
|
|
((0 | _k) < 0) |
|
|
((0 | Xk) < (0 | _k))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(il = q[(Zk + il) >> 2])) <
|
|
0) |
|
|
((0 | Xk) <= (0 | il))
|
|
)
|
|
break f;
|
|
if (
|
|
((_k = (_k + il) | 0) >>>
|
|
31) |
|
|
((0 | Xk) < (0 | _k))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | Vk) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
for (a = 0;;) {
|
|
if (
|
|
((_k =
|
|
q[(Zk + (a << 2)) >> 2] << 2),
|
|
(Xk = q[(_k + Yk) >> 2]))
|
|
) {
|
|
if (
|
|
((0 | Xk) < 0) |
|
|
((0 | el) < (0 | Xk))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 |
|
|
(_k = q[(_k + dl) >> 2])) <
|
|
0) |
|
|
((0 | el) <= (0 | _k))
|
|
)
|
|
break f;
|
|
if (
|
|
((0 | (Xk = (Xk + _k) | 0)) <
|
|
0) |
|
|
((0 | el) < (0 | Xk))
|
|
)
|
|
break f;
|
|
}
|
|
if (
|
|
(0 | Vk) ==
|
|
(0 | (a = (a + 1) | 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (L = pl),
|
|
1;
|
|
}
|
|
return Y(4, 1846, 0), (L = pl), 0;
|
|
}
|
|
(q[(_k + 52) >> 2] = Xk),
|
|
(q[(_k + 48) >> 2] = 5),
|
|
Y(4, 1640, (_k + 48) | 0);
|
|
} else
|
|
(q[(_k + 32) >> 2] = Xk),
|
|
Y(4, 1554, (_k + 32) | 0);
|
|
return (L = pl), 0;
|
|
})(a, vj) :
|
|
((q[(20 + wj) >> 2] = 1621),
|
|
(q[(16 + wj) >> 2] = 2284),
|
|
Y(4, 1294, (16 + wj) | 0),
|
|
0) :
|
|
((q[(4 + wj) >> 2] = 1444),
|
|
(q[wj >> 2] = 2284),
|
|
Y(4, 1294, wj),
|
|
0)),
|
|
(L = (48 + wj) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
i: function(a) {
|
|
q[1805] = a |= 0;
|
|
},
|
|
j: function(a, ej) {
|
|
var fj;
|
|
return (
|
|
(ej |= 0),
|
|
(L = fj = (L - 48) | 0),
|
|
(a = (a |= 0) ?
|
|
((a + 63) & -64) != (0 | a) ?
|
|
((q[(36 + fj) >> 2] = 1522),
|
|
(q[(32 + fj) >> 2] = 2305),
|
|
Y(4, 1294, (32 + fj) | 0),
|
|
0) :
|
|
((ej + 63) & -64) == (0 | ej) && ej ?
|
|
(function(a) {
|
|
var Qk,
|
|
Tk,
|
|
Uk,
|
|
Uh,
|
|
Kk = 0,
|
|
Lk = 0,
|
|
Mk = 0,
|
|
Nk = 0,
|
|
Ok = 0,
|
|
Pk = 0,
|
|
Rk = 0,
|
|
Sk = 0;
|
|
(q[(24 + (L = Qk = (L - 32) | 0)) >> 2] = 0),
|
|
(q[(16 + Qk) >> 2] = 5),
|
|
(q[(20 + Qk) >> 2] = 0),
|
|
Ka(
|
|
(16 + (L = Uh = (L - 272) | 0)) | 0,
|
|
2227,
|
|
(q[(12 + Uh) >> 2] = (16 + Qk) | 0)
|
|
),
|
|
(function(a) {
|
|
var Hc;
|
|
(q[(L = Hc = (L - 16) | 0) >> 2] = a),
|
|
(function(a, Il) {
|
|
var Jl;
|
|
(q[(12 + (L = Jl = (L - 16) | 0)) >> 2] =
|
|
Il),
|
|
Ia(a, 1432, Il, 0, 0),
|
|
(L = (16 + Jl) | 0);
|
|
})(q[970], Hc),
|
|
(L = (16 + Hc) | 0);
|
|
})((16 + Uh) | 0),
|
|
(L = (272 + Uh) | 0);
|
|
a: {
|
|
if (sa(a)) Y(4, 1932, 0);
|
|
else {
|
|
if (!(6 <= (Mk = r[(a + 4) | 0]) >>> 0)) {
|
|
if (
|
|
(1 != (0 | !r[(a + 5) | 0]) ?
|
|
(da((a + 4) | 0, 1),
|
|
X((a - -64) | 0, 4, 160),
|
|
na(
|
|
a,
|
|
(a + 704) | (o[(a + 5) | 0] = 0)
|
|
),
|
|
ya(a)) :
|
|
na(a, (a + 704) | 0),
|
|
r[7224] ||
|
|
((q[1807] = 6),
|
|
(o[7224] = 1),
|
|
(q[1808] = 7),
|
|
(q[1809] = 8),
|
|
(q[1810] = 9)),
|
|
(Lk = q[(a + 704) >> 2]),
|
|
1 <= (0 | (Mk = q[(Lk + 16) >> 2])))
|
|
) {
|
|
for (
|
|
Sk =
|
|
((Nk = q[(a + 912) >> 2]) +
|
|
(Mk << 2)) |
|
|
0,
|
|
Ok = q[(a + 908) >> 2];;
|
|
|
|
) {
|
|
Rk =
|
|
(q[(a + 1204) >> 2] +
|
|
(q[Ok >> 2] << 2)) |
|
|
0;
|
|
d: if (!(
|
|
((Lk = 0) |
|
|
(Kk =
|
|
((Mk = q[Nk >> 2]) + -1) | 0)) <
|
|
1
|
|
))
|
|
e: for (;;) {
|
|
for (;;) {
|
|
if (
|
|
q[
|
|
(Pk = (Rk + (Lk << 2)) | 0) >>
|
|
2
|
|
] <= -1
|
|
) {
|
|
if (
|
|
((function(a, Vk, ql) {
|
|
var rl = 0,
|
|
sl = 0;
|
|
a: if (
|
|
(0 | a) !=
|
|
(0 | Vk)
|
|
) {
|
|
if (!(
|
|
a >>> 0 <
|
|
(Vk + ql) >>> 0 &&
|
|
Vk >>> 0 <
|
|
(sl =
|
|
(a + ql) | 0) >>>
|
|
0
|
|
))
|
|
return $(a, Vk, ql);
|
|
if (
|
|
((rl = 3 & (a ^ Vk)),
|
|
a >>> 0 < Vk >>> 0)
|
|
) {
|
|
if (!rl) {
|
|
if (3 & a)
|
|
for (;;) {
|
|
if (!ql) break a;
|
|
if (
|
|
((o[0 | a] =
|
|
r[0 | Vk]),
|
|
(Vk =
|
|
(Vk + 1) | 0),
|
|
(ql =
|
|
(ql + -1) |
|
|
0), !(
|
|
3 &
|
|
(a =
|
|
(a + 1) | 0)
|
|
))
|
|
)
|
|
break;
|
|
}
|
|
if (!(ql >>> 0 <= 3)) {
|
|
for (
|
|
rl = ql;
|
|
(q[a >> 2] =
|
|
q[Vk >> 2]),
|
|
(Vk =
|
|
(Vk + 4) | 0),
|
|
(a =
|
|
(a + 4) | 0),
|
|
3 <
|
|
(rl =
|
|
(rl + -4) |
|
|
0) >>>
|
|
0;
|
|
|
|
);
|
|
ql &= 3;
|
|
}
|
|
}
|
|
if (ql)
|
|
for (;
|
|
(o[0 | a] =
|
|
r[0 | Vk]),
|
|
(a = (a + 1) | 0),
|
|
(Vk =
|
|
(Vk + 1) | 0),
|
|
(ql =
|
|
(ql + -1) | 0);
|
|
|
|
);
|
|
} else {
|
|
if (!rl) {
|
|
if (3 & sl)
|
|
for (;;) {
|
|
if (!ql) break a;
|
|
if (
|
|
((o[
|
|
0 |
|
|
(rl =
|
|
((ql =
|
|
(ql +
|
|
-1) |
|
|
0) +
|
|
a) |
|
|
0)
|
|
] =
|
|
r[
|
|
(Vk + ql) |
|
|
0
|
|
]), !(3 & rl))
|
|
)
|
|
break;
|
|
}
|
|
if (!(ql >>> 0 <= 3))
|
|
for (;
|
|
(q[
|
|
((ql =
|
|
(ql + -4) |
|
|
0) +
|
|
a) >>
|
|
2
|
|
] =
|
|
q[
|
|
(Vk + ql) >> 2
|
|
]),
|
|
3 < ql >>> 0;
|
|
|
|
);
|
|
}
|
|
if (ql)
|
|
for (;
|
|
(o[
|
|
((ql =
|
|
(ql + -1) | 0) +
|
|
a) |
|
|
0
|
|
] =
|
|
r[(Vk + ql) | 0]),
|
|
ql;
|
|
|
|
);
|
|
}
|
|
}
|
|
})(
|
|
Pk,
|
|
(Pk + 4) | 0,
|
|
((-1 ^ Lk) + Mk) << 2
|
|
),
|
|
(0 | Lk) <
|
|
(0 |
|
|
(Kk =
|
|
((Mk = Kk) + -1) | 0)))
|
|
)
|
|
continue e;
|
|
break d;
|
|
}
|
|
if (!(
|
|
(0 | (Lk = (Lk + 1) | 0)) <
|
|
(0 | Kk)
|
|
))
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
if (
|
|
((Lk = Nk),
|
|
0 < (0 | Mk) &&
|
|
(Mk =
|
|
q[(Rk + (Kk << 2)) >> 2] < 0 ?
|
|
Kk :
|
|
Mk),
|
|
(q[Lk >> 2] = Mk),
|
|
(Ok = (Ok + 4) | 0), !(
|
|
(Nk = (Nk + 4) | 0) >>> 0 <
|
|
Sk >>> 0
|
|
))
|
|
)
|
|
break;
|
|
}
|
|
Lk = q[(a + 704) >> 2];
|
|
}
|
|
if (1 <= q[Lk >> 2])
|
|
for (
|
|
Kk = 0;
|
|
(q[
|
|
(q[(a + 712) >> 2] + (Kk << 2)) >> 2
|
|
] = q[(a + 716) >> 2] + (Kk << 6)),
|
|
(Lk = q[(a + 704) >> 2]),
|
|
(0 | (Kk = (Kk + 1) | 0)) <
|
|
q[Lk >> 2];
|
|
|
|
);
|
|
if (1 <= q[(Lk + 4) >> 2])
|
|
for (
|
|
Kk = 0;
|
|
(q[
|
|
(q[(a + 744) >> 2] + (Kk << 2)) >> 2
|
|
] = q[(a + 748) >> 2] + (Kk << 6)),
|
|
(Lk = q[(a + 704) >> 2]),
|
|
(0 | (Kk = (Kk + 1) | 0)) <
|
|
q[(Lk + 4) >> 2];
|
|
|
|
);
|
|
if (1 <= q[(Lk + 16) >> 2])
|
|
for (
|
|
Kk = 0;
|
|
(q[
|
|
((Mk = Kk << 2) +
|
|
q[(a + 832) >> 2]) >>
|
|
2
|
|
] = q[(a + 848) >> 2] + (Kk << 6)),
|
|
(q[(Mk + q[(a + 836) >> 2]) >> 2] =
|
|
q[(a + 1196) >> 2] +
|
|
(q[(Mk + q[(a + 896) >> 2]) >> 2] <<
|
|
2)),
|
|
(q[(Mk + q[(a + 840) >> 2]) >> 2] =
|
|
q[(a + 1200) >> 2] +
|
|
(q[(Mk + q[(a + 900) >> 2]) >> 2] <<
|
|
1)),
|
|
(q[(Mk + q[(a + 844) >> 2]) >> 2] =
|
|
q[(a + 1204) >> 2] +
|
|
(q[(Mk + q[(a + 908) >> 2]) >> 2] <<
|
|
2)),
|
|
(Lk = q[(a + 704) >> 2]),
|
|
(0 | (Kk = (Kk + 1) | 0)) <
|
|
q[(Lk + 16) >> 2];
|
|
|
|
);
|
|
if (1 <= q[(Lk + 20) >> 2])
|
|
for (
|
|
Kk = 0;
|
|
(q[
|
|
(q[(a + 916) >> 2] + (Kk << 2)) >> 2
|
|
] = q[(a + 920) >> 2] + (Kk << 6)),
|
|
(Lk = q[(a + 704) >> 2]),
|
|
(0 | (Kk = (Kk + 1) | 0)) <
|
|
q[(Lk + 20) >> 2];
|
|
|
|
);
|
|
if (1 <= q[(Lk + 80) >> 2])
|
|
for (
|
|
Kk = 0;
|
|
(q[
|
|
(q[(a + 1240) >> 2] + (Kk << 2)) >> 2
|
|
] = q[(a + 1244) >> 2] + (Kk << 6)),
|
|
(Lk = q[(a + 704) >> 2]),
|
|
(0 | (Kk = (Kk + 1) | 0)) <
|
|
q[(Lk + 80) >> 2];
|
|
|
|
);
|
|
if (1 & o[(q[(a + 708) >> 2] + 20) | 0])
|
|
break a;
|
|
if ((0 | (Nk = q[(Lk + 16) >> 2])) < 1)
|
|
break a;
|
|
for (
|
|
Kk = q[(a + 904) >> 2],
|
|
Rk = q[(a + 900) >> 2],
|
|
Pk = q[(a + 1200) >> 2],
|
|
Ok = 0;;
|
|
|
|
) {
|
|
if (
|
|
0 <
|
|
(0 |
|
|
(Sk =
|
|
(q[((Mk = Ok << 2) + Kk) >> 2] +
|
|
-1) |
|
|
0))
|
|
)
|
|
for (
|
|
Tk =
|
|
(Pk + (q[(Mk + Rk) >> 2] << 1)) | 0,
|
|
Lk = 0;
|
|
(Uk =
|
|
s[
|
|
(Mk = (Tk + (Lk << 1)) | 0) >> 1
|
|
]),
|
|
(p[Mk >> 1] = s[(Mk + 4) >> 1]),
|
|
(p[(Mk + 4) >> 1] = Uk),
|
|
(0 | (Lk = (Lk + 3) | 0)) <
|
|
(0 | Sk);
|
|
|
|
);
|
|
if ((0 | Nk) == (0 | (Ok = (Ok + 1) | 0)))
|
|
break;
|
|
}
|
|
for (
|
|
Mk = q[(a + 892) >> 2],
|
|
Ok = q[(a + 896) >> 2],
|
|
Rk = q[(a + 1196) >> 2],
|
|
Kk = 0;;
|
|
|
|
) {
|
|
if (
|
|
1 <=
|
|
(0 |
|
|
(Pk = q[((Lk = Kk << 2) + Mk) >> 2]))
|
|
)
|
|
for (
|
|
Pk =
|
|
((Lk =
|
|
(Rk + (q[(Lk + Ok) >> 2] << 2)) |
|
|
0) +
|
|
(Pk << 3)) |
|
|
0,
|
|
Lk = (Lk + 4) | 0;
|
|
(u[Lk >> 2] = x(1) - u[Lk >> 2]),
|
|
(Lk = (Lk + 8) | 0) >>> 0 <
|
|
Pk >>> 0;
|
|
|
|
);
|
|
if ((0 | Nk) == (0 | (Kk = (Kk + 1) | 0)))
|
|
break;
|
|
}
|
|
break a;
|
|
}
|
|
(q[(4 + Qk) >> 2] = Mk),
|
|
(q[Qk >> 2] = 5),
|
|
Y(4, 2023, Qk);
|
|
}
|
|
a = 0;
|
|
}
|
|
return (L = (32 + Qk) | 0), a;
|
|
})(a) :
|
|
((q[(20 + fj) >> 2] = 1621),
|
|
(q[(16 + fj) >> 2] = 2305),
|
|
Y(4, 1294, (16 + fj) | 0),
|
|
0) :
|
|
((q[(4 + fj) >> 2] = 1444),
|
|
(q[fj >> 2] = 2305),
|
|
Y(4, 1294, fj),
|
|
0)),
|
|
(L = (48 + fj) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
k: function(a, ej, fj, gj) {
|
|
var hj;
|
|
(ej |= 0),
|
|
(fj |= 0),
|
|
(gj |= 0),
|
|
(L = hj = (L + -64) | 0),
|
|
(a |= 0) ?
|
|
ej
|
|
?
|
|
fj ?
|
|
gj ?
|
|
((a = q[(q[a >> 2] + 708) >> 2]),
|
|
(q[ej >> 2] = q[(a + 12) >> 2]),
|
|
(q[(ej + 4) >> 2] = q[(a + 16) >> 2]),
|
|
(q[fj >> 2] = q[(a + 4) >> 2]),
|
|
(q[(fj + 4) >> 2] = q[(a + 8) >> 2]),
|
|
(q[gj >> 2] = q[a >> 2])) :
|
|
((q[(52 + hj) >> 2] = 1995),
|
|
(q[(48 + hj) >> 2] = 2325),
|
|
Y(4, 1294, (48 + hj) | 0)) :
|
|
((q[(36 + hj) >> 2] = 1903),
|
|
(q[(32 + hj) >> 2] = 2325),
|
|
Y(4, 1294, (32 + hj) | 0)) :
|
|
((q[(20 + hj) >> 2] = 1819),
|
|
(q[(16 + hj) >> 2] = 2325),
|
|
Y(4, 1294, (16 + hj) | 0)): ((q[(4 + hj) >> 2] = 1740),
|
|
(q[hj >> 2] = 2325),
|
|
Y(4, 1294, hj)),
|
|
(L = (64 + hj) | 0);
|
|
},
|
|
l: xa,
|
|
m: wa,
|
|
n: function(a) {
|
|
var dj;
|
|
(L = dj = (L - 16) | 0),
|
|
(a |= 0) ?
|
|
ua(a): ((q[(4 + dj) >> 2] = 1740),
|
|
(q[dj >> 2] = 2387),
|
|
Y(4, 1294, dj)),
|
|
(L = (16 + dj) | 0);
|
|
},
|
|
o: function(a) {
|
|
var cj;
|
|
return (
|
|
(L = cj = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 540) >> 2] :
|
|
((q[(4 + cj) >> 2] = 1740),
|
|
(q[cj >> 2] = 2402),
|
|
Y(4, 1294, cj), -1)),
|
|
(L = (16 + cj) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
p: function(a) {
|
|
var bj;
|
|
return (
|
|
(L = bj = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 916) >> 2] :
|
|
((q[(4 + bj) >> 2] = 1740),
|
|
(q[bj >> 2] = 2423),
|
|
Y(4, 1294, bj),
|
|
0)),
|
|
(L = (16 + bj) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
q: function(a) {
|
|
var aj;
|
|
return (
|
|
(L = aj = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 548) >> 2] :
|
|
((q[(4 + aj) >> 2] = 1740),
|
|
(q[aj >> 2] = 2442),
|
|
Y(4, 1294, aj),
|
|
0)),
|
|
(L = (16 + aj) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
r: function(a) {
|
|
var $i;
|
|
return (
|
|
(L = $i = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 928) >> 2] :
|
|
((q[(4 + $i) >> 2] = 1740),
|
|
(q[$i >> 2] = 2463),
|
|
Y(4, 1294, $i),
|
|
0)),
|
|
(L = (16 + $i) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
s: function(a) {
|
|
var _i;
|
|
return (
|
|
(L = _i = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 924) >> 2] :
|
|
((q[(4 + _i) >> 2] = 1740),
|
|
(q[_i >> 2] = 2492),
|
|
Y(4, 1294, _i),
|
|
0)),
|
|
(L = (16 + _i) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
t: function(a) {
|
|
var Zi;
|
|
return (
|
|
(L = Zi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 932) >> 2] :
|
|
((q[(4 + Zi) >> 2] = 1740),
|
|
(q[Zi >> 2] = 2521),
|
|
Y(4, 1294, Zi),
|
|
0)),
|
|
(L = (16 + Zi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
u: function(a) {
|
|
var Yi;
|
|
return (
|
|
(L = Yi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 552) >> 2] :
|
|
((q[(4 + Yi) >> 2] = 1740),
|
|
(q[Yi >> 2] = 2550),
|
|
Y(4, 1294, Yi),
|
|
0)),
|
|
(L = (16 + Yi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
v: function(a) {
|
|
var Xi;
|
|
return (
|
|
(L = Xi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 4) >> 2] :
|
|
((q[(4 + Xi) >> 2] = 1740),
|
|
(q[Xi >> 2] = 2572),
|
|
Y(4, 1294, Xi), -1)),
|
|
(L = (16 + Xi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
w: function(a) {
|
|
var Wi;
|
|
return (
|
|
(L = Wi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 712) >> 2] :
|
|
((q[(4 + Wi) >> 2] = 1740),
|
|
(q[Wi >> 2] = 2588),
|
|
Y(4, 1294, Wi),
|
|
0)),
|
|
(L = (16 + Wi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
x: function(a) {
|
|
var Vi;
|
|
return (
|
|
(L = Vi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 52) >> 2] :
|
|
((q[(4 + Vi) >> 2] = 1740),
|
|
(q[Vi >> 2] = 2602),
|
|
Y(4, 1294, Vi),
|
|
0)),
|
|
(L = (16 + Vi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
y: function(a) {
|
|
var Ui;
|
|
return (
|
|
(L = Ui = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 740) >> 2] :
|
|
((q[(4 + Ui) >> 2] = 1740),
|
|
(q[Ui >> 2] = 2622),
|
|
Y(4, 1294, Ui),
|
|
0)),
|
|
(L = (16 + Ui) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
z: function(a) {
|
|
var Ti;
|
|
return (
|
|
(L = Ti = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 332) >> 2] :
|
|
((q[(4 + Ti) >> 2] = 1740),
|
|
(q[Ti >> 2] = 2650),
|
|
Y(4, 1294, Ti), -1)),
|
|
(L = (16 + Ti) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
A: function(a) {
|
|
var Si;
|
|
return (
|
|
(L = Si = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 832) >> 2] :
|
|
((q[(4 + Si) >> 2] = 1740),
|
|
(q[Si >> 2] = 2670),
|
|
Y(4, 1294, Si),
|
|
0)),
|
|
(L = (16 + Si) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
B: function(a) {
|
|
var Ri;
|
|
return (
|
|
(L = Ri = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 888) >> 2] :
|
|
((q[(4 + Ri) >> 2] = 1740),
|
|
(q[Ri >> 2] = 2688),
|
|
Y(4, 1294, Ri),
|
|
0)),
|
|
(L = (16 + Ri) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
C: function(a) {
|
|
var Qi;
|
|
return (
|
|
(L = Qi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 432) >> 2] :
|
|
((q[(4 + Qi) >> 2] = 1740),
|
|
(q[Qi >> 2] = 2716),
|
|
Y(4, 1294, Qi),
|
|
0)),
|
|
(L = (16 + Qi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
D: function(a) {
|
|
var Pi;
|
|
return (
|
|
(L = Pi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 884) >> 2] :
|
|
((q[(4 + Pi) >> 2] = 1740),
|
|
(q[Pi >> 2] = 2743),
|
|
Y(4, 1294, Pi),
|
|
0)),
|
|
(L = (16 + Pi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
E: function(a) {
|
|
var Oi;
|
|
return (
|
|
(L = Oi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 440) >> 2] :
|
|
((q[(4 + Oi) >> 2] = 1740),
|
|
(q[Oi >> 2] = 2772),
|
|
Y(4, 1294, Oi),
|
|
0)),
|
|
(L = (16 + Oi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
F: function(a) {
|
|
var Ni;
|
|
return (
|
|
(L = Ni = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 436) >> 2] :
|
|
((q[(4 + Ni) >> 2] = 1740),
|
|
(q[Ni >> 2] = 2797),
|
|
Y(4, 1294, Ni),
|
|
0)),
|
|
(L = (16 + Ni) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
G: function(a) {
|
|
var Mi;
|
|
return (
|
|
(L = Mi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 448) >> 2] :
|
|
((q[(4 + Mi) >> 2] = 1740),
|
|
(q[Mi >> 2] = 2824),
|
|
Y(4, 1294, Mi),
|
|
0)),
|
|
(L = (16 + Mi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
H: function(a) {
|
|
var Li;
|
|
return (
|
|
(L = Li = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 912) >> 2] :
|
|
((q[(4 + Li) >> 2] = 1740),
|
|
(q[Li >> 2] = 2848),
|
|
Y(4, 1294, Li),
|
|
0)),
|
|
(L = (16 + Li) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
I: function(a) {
|
|
var Ki;
|
|
return (
|
|
(L = Ki = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 844) >> 2] :
|
|
((q[(4 + Ki) >> 2] = 1740),
|
|
(q[Ki >> 2] = 2873),
|
|
Y(4, 1294, Ki),
|
|
0)),
|
|
(L = (16 + Ki) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
J: function(a) {
|
|
var Ji;
|
|
return (
|
|
(L = Ji = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 892) >> 2] :
|
|
((q[(4 + Ji) >> 2] = 1740),
|
|
(q[Ji >> 2] = 2893),
|
|
Y(4, 1294, Ji),
|
|
0)),
|
|
(L = (16 + Ji) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
K: function(a) {
|
|
var Ii;
|
|
return (
|
|
(L = Ii = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 444) >> 2] :
|
|
((q[(4 + Ii) >> 2] = 1740),
|
|
(q[Ii >> 2] = 2920),
|
|
Y(4, 1294, Ii),
|
|
0)),
|
|
(L = (16 + Ii) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
L: function(a) {
|
|
var Hi;
|
|
return (
|
|
(L = Hi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 836) >> 2] :
|
|
((q[(4 + Hi) >> 2] = 1740),
|
|
(q[Hi >> 2] = 2950),
|
|
Y(4, 1294, Hi),
|
|
0)),
|
|
(L = (16 + Hi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
M: function(a) {
|
|
var ri;
|
|
return (
|
|
(L = ri = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 904) >> 2] :
|
|
((q[(4 + ri) >> 2] = 1740),
|
|
(q[ri >> 2] = 2974),
|
|
Y(4, 1294, ri),
|
|
0)),
|
|
(L = (16 + ri) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
N: function(a) {
|
|
var qi;
|
|
return (
|
|
(L = qi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 840) >> 2] :
|
|
((q[(4 + qi) >> 2] = 1740),
|
|
(q[qi >> 2] = 3e3),
|
|
Y(4, 1294, qi),
|
|
0)),
|
|
(L = (16 + qi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
O: function(a) {
|
|
var pi;
|
|
return (
|
|
(L = pi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 452) >> 2] :
|
|
((q[(4 + pi) >> 2] = 1740),
|
|
(q[pi >> 2] = 3022),
|
|
Y(4, 1294, pi),
|
|
0)),
|
|
(L = (16 + pi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
P: function(a) {
|
|
var oi;
|
|
return (
|
|
(L = oi = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 456) >> 2] :
|
|
((q[(4 + oi) >> 2] = 1740),
|
|
(q[oi >> 2] = 3051),
|
|
Y(4, 1294, oi),
|
|
0)),
|
|
(L = (16 + oi) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
Q: function(a) {
|
|
var ni;
|
|
return (
|
|
(L = ni = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(q[a >> 2] + 876) >> 2] :
|
|
((q[(4 + ni) >> 2] = 1740),
|
|
(q[ni >> 2] = 3078),
|
|
Y(4, 1294, ni),
|
|
0)),
|
|
(L = (16 + ni) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
R: function(a) {
|
|
var mi;
|
|
(L = mi = (L - 16) | 0),
|
|
(a |= 0) ?
|
|
(q[(a + 428) >> 2] = 1) :
|
|
((q[(4 + mi) >> 2] = 1740),
|
|
(q[mi >> 2] = 3110),
|
|
Y(4, 1294, mi)),
|
|
(L = (16 + mi) | 0);
|
|
},
|
|
S: function(a) {
|
|
var li;
|
|
return (
|
|
(L = li = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 640) >> 2] :
|
|
((q[(4 + li) >> 2] = 1740),
|
|
(q[li >> 2] = 3139),
|
|
Y(4, 1294, li),
|
|
0)),
|
|
(L = (16 + li) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
T: function(a) {
|
|
var ji;
|
|
return (
|
|
(L = ji = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
q[(a + 636) >> 2] :
|
|
((q[(4 + ji) >> 2] = 1740),
|
|
(q[ji >> 2] = 3164),
|
|
Y(4, 1294, ji),
|
|
0)),
|
|
(L = (16 + ji) | 0),
|
|
0 | a
|
|
);
|
|
},
|
|
U: function(a) {
|
|
var Fc;
|
|
return (
|
|
oa((12 + (L = Fc = (L - 16) | 0)) | 0, 64, (a |= 0)),
|
|
(L = (16 + Fc) | 0),
|
|
q[(12 + Fc) >> 2]
|
|
);
|
|
},
|
|
V: function(a) {
|
|
var Ec,
|
|
Cc,
|
|
Dc = 0;
|
|
return (
|
|
(L = Cc = (L - 16) | 0), !(a |= 0) ||
|
|
oa((12 + Cc) | 0, 16, (Ec = xa(a))) ||
|
|
(Dc = wa(a, q[(12 + Cc) >> 2], Ec)) ||
|
|
(pa(q[(12 + Cc) >> 2]), (Dc = 0)),
|
|
(L = (16 + Cc) | 0),
|
|
0 | Dc
|
|
);
|
|
},
|
|
W: function(a) {
|
|
return 0 | qa((a |= 0));
|
|
},
|
|
X: function(a) {
|
|
pa((a |= 0));
|
|
},
|
|
Y: function(a) {
|
|
var Sm;
|
|
oa((12 + (L = Sm = (L - 16) | 0)) | 0, 64, (a |= 0)),
|
|
pa(q[(12 + Sm) >> 2]),
|
|
(L = (16 + Sm) | 0);
|
|
},
|
|
Z: function() {
|
|
return 0 | L;
|
|
},
|
|
_: function(a) {
|
|
return 0 | (L = (L - (0 | a)) & -16);
|
|
},
|
|
$: function(a) {
|
|
L = 0 | a;
|
|
},
|
|
aa: function(a) {
|
|
return (
|
|
0 |
|
|
((a = 0 | (a |= 0)),
|
|
(P = 0 | N()) < (a = (P + (a |= 0)) | 0) &&
|
|
a < 65536 &&
|
|
((a = new ArrayBuffer(w(a, 65536))),
|
|
(S = new global.Int8Array(a)).set(o),
|
|
(o = S),
|
|
(o = new global.Int8Array(a)),
|
|
(p = new global.Int16Array(a)),
|
|
(q = new global.Int32Array(a)),
|
|
(r = new global.Uint8Array(a)),
|
|
(s = new global.Uint16Array(a)),
|
|
(t = new global.Uint32Array(a)),
|
|
(u = new global.Float32Array(a)),
|
|
(v = new global.Float64Array(a)),
|
|
(buffer = a),
|
|
(m.buffer = a)),
|
|
P)
|
|
);
|
|
var S, P;
|
|
},
|
|
ba: function(a, Vk) {
|
|
n[(a |= 0)]((Vk |= 0));
|
|
},
|
|
}
|
|
);
|
|
|
|
function Y(a, b, c) {
|
|
var g;
|
|
(L = g = (L - 272) | 0),
|
|
t[1804] > a >>> 0 ||
|
|
((a = q[1805]) &&
|
|
(Ka((16 + g) | 0, b, (q[(12 + g) >> 2] = c)),
|
|
n[a]((16 + g) | 0))),
|
|
(L = (272 + g) | 0);
|
|
}
|
|
|
|
function Z(a, b, c) {
|
|
32 & r[0 | a] ||
|
|
!(function(a, Rm, Sm) {
|
|
var Tm = 0,
|
|
Um = 0,
|
|
tn = 0;
|
|
a: {
|
|
if (!(Tm = q[(Sm + 16) >> 2])) {
|
|
if (
|
|
(function(a) {
|
|
var Rm;
|
|
return (
|
|
(Rm = r[(a + 74) | 0]),
|
|
(o[(a + 74) | 0] = (Rm + -1) | Rm),
|
|
8 & (Rm = q[a >> 2]) ?
|
|
((q[a >> 2] = 32 | Rm), 1) :
|
|
((q[(a + 4) >> 2] = 0),
|
|
(q[(a + 8) >> 2] = 0),
|
|
(Rm = q[(a + 44) >> 2]),
|
|
(q[(a + 28) >> 2] = Rm),
|
|
(q[(a + 20) >> 2] = Rm),
|
|
(q[(a + 16) >> 2] = Rm + q[(a + 48) >> 2]),
|
|
0)
|
|
);
|
|
})(Sm)
|
|
)
|
|
break a;
|
|
Tm = q[(Sm + 16) >> 2];
|
|
}
|
|
if ((Tm - (tn = q[(Sm + 20) >> 2])) >>> 0 < Rm >>> 0)
|
|
return n[q[(Sm + 36) >> 2]](Sm, a, Rm);
|
|
b: if (!(o[(Sm + 75) | 0] < 0)) {
|
|
for (Tm = Rm;;) {
|
|
if (!(Um = Tm)) break b;
|
|
if (10 == r[((Tm = (Um + -1) | 0) + a) | 0]) break;
|
|
}
|
|
if (n[q[(Sm + 36) >> 2]](Sm, a, Um) >>> 0 < Um >>> 0)
|
|
break a;
|
|
(Rm = (Rm - Um) | 0),
|
|
(a = (a + Um) | 0),
|
|
(tn = q[(Sm + 20) >> 2]);
|
|
}
|
|
$(tn, a, Rm),
|
|
(q[(Sm + 20) >> 2] = q[(Sm + 20) >> 2] + Rm);
|
|
}
|
|
})(b, c, a);
|
|
}
|
|
|
|
function _(a, b, c, h, i) {
|
|
var k, l, j;
|
|
if (
|
|
((L = j = (L - 256) | 0), !((73728 & i) | ((0 | c) <= (0 | h))))
|
|
) {
|
|
if (
|
|
(ca(j, b, (k = (i = (c - h) | 0) >>> 0 < 256) ? i : 256),
|
|
(b = a),
|
|
(l = j), !k)
|
|
) {
|
|
for (
|
|
c = (c - h) | 0; Z(a, j, 256), 255 < (i = (i + -256) | 0) >>> 0;
|
|
|
|
);
|
|
i = 255 & c;
|
|
}
|
|
Z(b, l, i);
|
|
}
|
|
L = (256 + j) | 0;
|
|
}
|
|
|
|
function $(a, b, c) {
|
|
var h,
|
|
i = 0;
|
|
if (8192 <= c >>> 0) I(0 | a, 0 | b, 0 | c);
|
|
else {
|
|
if (((h = (a + c) | 0), 3 & (a ^ b)))
|
|
if (h >>> 0 < 4) c = a;
|
|
else if ((i = (h - 4) | 0) >>> 0 < a >>> 0) c = a;
|
|
else
|
|
for (
|
|
c = a;
|
|
(o[0 | c] = r[0 | b]),
|
|
(o[(c + 1) | 0] = r[(b + 1) | 0]),
|
|
(o[(c + 2) | 0] = r[(b + 2) | 0]),
|
|
(o[(c + 3) | 0] = r[(b + 3) | 0]),
|
|
(b = (b + 4) | 0),
|
|
(c = (c + 4) | 0) >>> 0 <= i >>> 0;
|
|
|
|
);
|
|
else {
|
|
b: if ((0 | c) < 1) c = a;
|
|
elseif (3 & a)
|
|
for (c = a;;) {
|
|
if (
|
|
((o[0 | c] = r[0 | b]),
|
|
(b = (b + 1) | 0),
|
|
h >>> 0 <= (c = (c + 1) | 0) >>> 0)
|
|
)
|
|
break b;
|
|
if (!(3 & c)) break;
|
|
}
|
|
else c = a;
|
|
if (!(
|
|
(a = -4 & h) >>> 0 < 64 ||
|
|
(i = (a + -64) | 0) >>> 0 < c >>> 0
|
|
))
|
|
for (;
|
|
(q[c >> 2] = q[b >> 2]),
|
|
(q[(c + 4) >> 2] = q[(b + 4) >> 2]),
|
|
(q[(c + 8) >> 2] = q[(b + 8) >> 2]),
|
|
(q[(c + 12) >> 2] = q[(b + 12) >> 2]),
|
|
(q[(c + 16) >> 2] = q[(b + 16) >> 2]),
|
|
(q[(c + 20) >> 2] = q[(b + 20) >> 2]),
|
|
(q[(c + 24) >> 2] = q[(b + 24) >> 2]),
|
|
(q[(c + 28) >> 2] = q[(b + 28) >> 2]),
|
|
(q[(c + 32) >> 2] = q[(b + 32) >> 2]),
|
|
(q[(c + 36) >> 2] = q[(b + 36) >> 2]),
|
|
(q[(c + 40) >> 2] = q[(b + 40) >> 2]),
|
|
(q[(c + 44) >> 2] = q[(b + 44) >> 2]),
|
|
(q[(c + 48) >> 2] = q[(b + 48) >> 2]),
|
|
(q[(c + 52) >> 2] = q[(b + 52) >> 2]),
|
|
(q[(c + 56) >> 2] = q[(b + 56) >> 2]),
|
|
(q[(c + 60) >> 2] = q[(b + 60) >> 2]),
|
|
(b = (b - -64) | 0),
|
|
(c = (c - -64) | 0) >>> 0 <= i >>> 0;
|
|
|
|
);
|
|
if (!(a >>> 0 <= c >>> 0))
|
|
for (;
|
|
(q[c >> 2] = q[b >> 2]),
|
|
(b = (b + 4) | 0),
|
|
(c = (c + 4) | 0) >>> 0 < a >>> 0;
|
|
|
|
);
|
|
}
|
|
if (c >>> 0 < h >>> 0)
|
|
for (;
|
|
(o[0 | c] = r[0 | b]),
|
|
(b = (b + 1) | 0),
|
|
(0 | h) != (0 | (c = (c + 1) | 0));
|
|
|
|
);
|
|
}
|
|
}
|
|
|
|
function aa(a) {
|
|
var b, c;
|
|
return x(
|
|
(b = a * a) *
|
|
b *
|
|
(c = b * a) *
|
|
(2718311493989822e-21 * b - 0.00019839334836096632) +
|
|
(c * (0.008333329385889463 * b - 0.16666666641626524) + a)
|
|
);
|
|
}
|
|
|
|
function ba(a) {
|
|
var m;
|
|
return x(-0.499999997251031 * (a *= a) +
|
|
1 +
|
|
0.04166662332373906 * (m = a * a) +
|
|
a * m * (2439044879627741e-20 * a - 0.001388676377460993)
|
|
);
|
|
}
|
|
|
|
function ca(a, n, p) {
|
|
var r, s, t, u;
|
|
if (
|
|
p &&
|
|
((o[((r = (a + p) | 0) - 1) | 0] = n),
|
|
(o[0 | a] = n), !(
|
|
p >>> 0 < 3 ||
|
|
((o[(r - 2) | 0] = n),
|
|
(o[(a + 1) | 0] = n),
|
|
(o[(r - 3) | 0] = n),
|
|
(o[(a + 2) | 0] = n),
|
|
p >>> 0 < 7) ||
|
|
((o[(r - 4) | 0] = n), (o[(a + 3) | 0] = n), p >>> 0 < 9) ||
|
|
((s = ((r = (0 - a) & 3) + a) | 0),
|
|
(n = w(255 & n, 16843009)),
|
|
(q[s >> 2] = n),
|
|
(q[((r = ((p = (p - r) & -4) + s) | 0) - 4) >> 2] = n),
|
|
p >>> 0 < 9) ||
|
|
((q[(8 + s) >> 2] = n),
|
|
(q[(4 + s) >> 2] = n),
|
|
(q[(r - 8) >> 2] = n),
|
|
(q[(r - 12) >> 2] = n),
|
|
p >>> 0 < 25) ||
|
|
((q[(24 + s) >> 2] = n),
|
|
(q[(20 + s) >> 2] = n),
|
|
(q[(16 + s) >> 2] = n),
|
|
(q[(12 + s) >> 2] = n),
|
|
(q[(r - 16) >> 2] = n),
|
|
(q[(r - 20) >> 2] = n),
|
|
(q[(r - 24) >> 2] = n),
|
|
(q[(r - 28) >> 2] = n),
|
|
(p = (p - (u = (4 & s) | 24)) | 0) >>> 0 < 32)
|
|
))
|
|
)
|
|
for (
|
|
t = r = n, n = (s + u) | 0;
|
|
(q[(n + 24) >> 2] = t),
|
|
(q[(n + 28) >> 2] = r),
|
|
(q[(n + 16) >> 2] = t),
|
|
(q[(n + 20) >> 2] = r),
|
|
(q[(n + 8) >> 2] = t),
|
|
(q[(n + 12) >> 2] = r),
|
|
(q[n >> 2] = t),
|
|
(q[(n + 4) >> 2] = r),
|
|
(n = (n + 32) | 0),
|
|
31 < (p = (p + -32) | 0) >>> 0;
|
|
|
|
);
|
|
return a;
|
|
}
|
|
|
|
function da(a, n) {
|
|
var p;
|
|
if (a >>> 0 < (n = (((a + n) | 0) - 1) | 0) >>> 0)
|
|
for (;
|
|
(p = r[0 | a]),
|
|
(o[0 | a] = r[0 | n]),
|
|
(o[0 | n] = p),
|
|
(a = (a + 1) | 0) >>> 0 < (n = (n + -1) | 0) >>> 0;
|
|
|
|
);
|
|
}
|
|
|
|
function ea(a) {
|
|
var n,
|
|
o = N();
|
|
return (a = ((n = q[2216]) + a) | 0) >>> 0 <= (o << 16) >>> 0 ||
|
|
J(0 | a) ?
|
|
((q[2216] = a), n) :
|
|
((q[2086] = 48), -1);
|
|
}
|
|
|
|
function fa(a, v, y, z, B, C, D) {
|
|
var H,
|
|
I,
|
|
K,
|
|
N,
|
|
Q,
|
|
R,
|
|
S,
|
|
O,
|
|
P,
|
|
J,
|
|
E = 0,
|
|
F = x(0),
|
|
G = x(0),
|
|
M = x(0);
|
|
if (
|
|
(x(0), x(0), x(0), x(0), (L = J = (L - 16) | 0), 1 <= (0 | a))
|
|
)
|
|
for (R = (w(a, 12) + v) | 0;;) {
|
|
if (1 <= (0 | (I = q[(v + 4) >> 2])))
|
|
for (
|
|
S = ((a = q[(v + 8) >> 2]) + w(I, 48)) | 0,
|
|
I = ((H = q[v >> 2] << 4) + D) | 0,
|
|
K = ((8 | H) + D) | 0,
|
|
H = ((4 | H) + D) | 0;
|
|
(E = q[(a + 8) >> 2]) &&
|
|
((O = (E + -1) | 0) >>> 0 <= 1 ?
|
|
((P = ((q[(a + 4) >> 2] << 2) + y) | 0),
|
|
(E = q[(P + (q[(a + 12) >> 2] << 2)) >> 2] << 2),
|
|
(F = u[(E + C) >> 2]),
|
|
(Q = u[(B + E) >> 2]),
|
|
(G = u[(z + E) >> 2]),
|
|
O - 1 ?
|
|
((M = G),
|
|
(G = u[(a + 20) >> 2]),
|
|
(u[I >> 2] =
|
|
u[I >> 2] + x(u[(a + 44) >> 2] * x(M * G))),
|
|
(u[H >> 2] =
|
|
u[H >> 2] + x(x(Q * G) * u[(a + 44) >> 2])),
|
|
(u[K >> 2] =
|
|
u[K >> 2] + x(x(F * G) * u[(a + 44) >> 2]))) :
|
|
((E =
|
|
q[((q[(a + 16) >> 2] << 2) + P) >> 2] << 2),
|
|
(O = u[(E + C) >> 2]),
|
|
(P = u[(B + E) >> 2]),
|
|
(M = G),
|
|
(G = u[(a + 20) >> 2]),
|
|
(N = u[(a + 24) >> 2]),
|
|
(u[I >> 2] =
|
|
u[I >> 2] +
|
|
x(
|
|
u[(a + 44) >> 2] *
|
|
x(x(M * G) + x(u[(z + E) >> 2] * N))
|
|
)),
|
|
(u[H >> 2] =
|
|
u[H >> 2] +
|
|
x(
|
|
x(x(Q * G) + x(P * N)) * u[(a + 44) >> 2]
|
|
)),
|
|
(u[K >> 2] =
|
|
u[K >> 2] +
|
|
x(
|
|
x(x(F * G) + x(O * N)) * u[(a + 44) >> 2]
|
|
)))) :
|
|
((q[J >> 2] = E), Y(4, 1024, J))),
|
|
(a = (a + 48) | 0) >>> 0 < S >>> 0;
|
|
|
|
);
|
|
if (
|
|
((a = ((q[v >> 2] << 4) + D) | 0),
|
|
(F = u[a >> 2]),
|
|
(u[a >> 2] = F < x(0) ? x(0) : x(A(F, x(1)))),
|
|
(F = u[(a + 4) >> 2]),
|
|
(u[(a + 4) >> 2] = F < x(0) ? x(0) : x(A(F, x(1)))),
|
|
(F = u[(a + 8) >> 2]),
|
|
(u[(a + 8) >> 2] = F < x(0) ? x(0) : x(A(F, x(1)))), !((v = (v + 12) | 0) >>> 0 < R >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
L = (16 + J) | 0;
|
|
}
|
|
|
|
function ga(a, q, v) {
|
|
var y,
|
|
z,
|
|
x = 0;
|
|
if (((1 == (0 | q)) & (a >>> 0 < 0)) | (q >>> 0 < 1)) x = a;
|
|
else
|
|
for (;
|
|
(y = ad((x = bd(a, q, 10)), (z = M), 10)),
|
|
(o[0 | (v = (v + -1) | 0)] = (a - y) | 48),
|
|
(y =
|
|
((9 == (0 | q)) & (4294967295 < a >>> 0)) |
|
|
(9 < q >>> 0)),
|
|
(a = x),
|
|
(q = z),
|
|
y;
|
|
|
|
);
|
|
if (x)
|
|
for (;
|
|
(o[0 | (v = (v + -1) | 0)] =
|
|
(x - w((a = ((x >>> 0) / 10) | 0), 10)) | 48),
|
|
(q = 9 < x >>> 0),
|
|
(x = a),
|
|
q;
|
|
|
|
);
|
|
return v;
|
|
}
|
|
|
|
function ha(a) {
|
|
return (a + -48) >>> 0 < 10;
|
|
}
|
|
|
|
function ia(a) {
|
|
var q;
|
|
return (q = La(a, 64)) ? (q - a) | 0 : 64;
|
|
}
|
|
|
|
function ja(a, v) {
|
|
var w = 0;
|
|
return (
|
|
1024 <= (0 | v) ?
|
|
((a *= 898846567431158e293),
|
|
(v =
|
|
(0 | (w = (v + -1023) | 0)) < 1024 ?
|
|
w :
|
|
((a *= 898846567431158e293),
|
|
(((0 | v) < 3069 ? v : 3069) + -2046) | 0))) :
|
|
-1023 < (0 | v) ||
|
|
((a *= 22250738585072014e-324),
|
|
(v = -1023 < (0 | (w = (v + 1022) | 0)) ?
|
|
w :
|
|
((a *= 22250738585072014e-324),
|
|
((-3066 < (0 | v) ? v : -3066) + 2044) | 0))),
|
|
f(0, 0),
|
|
f(1, (v + 1023) << 20),
|
|
a * +g()
|
|
);
|
|
}
|
|
|
|
function ka(a, v) {
|
|
var A = 0,
|
|
C = a,
|
|
B =
|
|
v >>> 0 <= 31 ?
|
|
((A = q[(a + 4) >> 2]), q[a >> 2]) :
|
|
((A = q[a >> 2]),
|
|
(q[(a + 4) >> 2] = A),
|
|
(v = (v + -32) | (q[a >> 2] = 0)),
|
|
0);
|
|
(q[C >> 2] = B << v),
|
|
(q[(a + 4) >> 2] = (A << v) | (B >>> (32 - v)));
|
|
}
|
|
|
|
function la(a, v, D, V, W) {
|
|
var X,
|
|
Y = 0,
|
|
Z = 0,
|
|
_ = 0;
|
|
(L = X = (L - 240) | 0),
|
|
(Y = q[v >> 2]),
|
|
(q[(232 + X) >> 2] = Y),
|
|
(v = q[(v + 4) >> 2]),
|
|
(q[X >> 2] = a),
|
|
(Z = 1);
|
|
a: {
|
|
b: {
|
|
c: {
|
|
if (
|
|
((q[(236 + X) >> 2] = v) || 1 != (0 | Y)) &&
|
|
((Y = (a - q[((D << 2) + W) >> 2]) | 0), !((0 | n[5](Y, a)) < 1))
|
|
) {
|
|
for (_ = !V;;) {
|
|
e: {
|
|
if (((v = Y), !(!_ | ((0 | D) < 2)))) {
|
|
if (
|
|
((V = q[((((D << 2) + W) | 0) - 8) >> 2]), -1 < (0 | n[5]((Y = (a + -4) | 0), v)))
|
|
)
|
|
break e;
|
|
if (-1 < (0 | n[5]((Y - V) | 0, v))) break e;
|
|
}
|
|
if (
|
|
((q[((Z << 2) + X) >> 2] = v),
|
|
(Z = (Z + 1) | 0),
|
|
ma((232 + X) | 0, (a = Oa((232 + X) | 0))),
|
|
(D = (a + D) | 0), !q[(236 + X) >> 2] && 1 == q[(232 + X) >> 2])
|
|
)
|
|
break b;
|
|
if (
|
|
((_ = 1),
|
|
(Y =
|
|
((a = v) - q[((D << 2) + W) >> 2]) | (V = 0)),
|
|
0 < (0 | n[5](Y, q[X >> 2])))
|
|
)
|
|
continue;
|
|
break c;
|
|
}
|
|
break;
|
|
}
|
|
v = a;
|
|
break b;
|
|
}
|
|
v = a;
|
|
}
|
|
if (V) break a;
|
|
}
|
|
Na(X, Z),
|
|
ta(v, D, W);
|
|
}
|
|
L = (240 + X) | 0;
|
|
}
|
|
|
|
function ma(a, v) {
|
|
var D = 0,
|
|
V = a,
|
|
L =
|
|
v >>> 0 <= 31 ?
|
|
((D = q[a >> 2]), q[(a + 4) >> 2]) :
|
|
((D = q[(a + 4) >> 2]),
|
|
(q[(a + 4) >> 2] = 0),
|
|
(q[a >> 2] = D),
|
|
(v = (v + -32) | 0),
|
|
0);
|
|
(q[(V + 4) >> 2] = L >>> v),
|
|
(q[a >> 2] = (L << (32 - v)) | (D >>> v));
|
|
}
|
|
|
|
function na(a, v) {
|
|
var W = r[(a + 4) | 0];
|
|
(q[v >> 2] = q[(a + 64) >> 2] + a),
|
|
(q[(v + 4) >> 2] = q[(a + 68) >> 2] + a),
|
|
(q[(v + 8) >> 2] = q[(a + 72) >> 2] + a),
|
|
(q[(v + 12) >> 2] = q[(a + 76) >> 2] + a),
|
|
(q[(v + 16) >> 2] = q[(a + 80) >> 2] + a),
|
|
(q[(v + 20) >> 2] = q[(a + 84) >> 2] + a),
|
|
(q[(v + 24) >> 2] = q[(a + 88) >> 2] + a),
|
|
(q[(v + 28) >> 2] = q[(a + 92) >> 2] + a),
|
|
(q[(v + 32) >> 2] = q[(a + 96) >> 2] + a),
|
|
(q[(v + 36) >> 2] = q[(a + 100) >> 2] + a),
|
|
(q[(v + 40) >> 2] = q[(a + 104) >> 2] + a),
|
|
(q[(v + 44) >> 2] = q[(a + 108) >> 2] + a),
|
|
(q[(v + 48) >> 2] = q[(a + 112) >> 2] + a),
|
|
(q[(v + 52) >> 2] = q[(a + 116) >> 2] + a),
|
|
(q[(v + 56) >> 2] = q[(a + 120) >> 2] + a),
|
|
(q[(v + 60) >> 2] = q[(a + 124) >> 2] + a),
|
|
(q[(v - -64) >> 2] = q[(a + 128) >> 2] + a),
|
|
(q[(v + 68) >> 2] = q[(a + 132) >> 2] + a),
|
|
(q[(v + 72) >> 2] = q[(a + 136) >> 2] + a),
|
|
(q[(v + 76) >> 2] = q[(a + 140) >> 2] + a),
|
|
(q[(v + 80) >> 2] = q[(a + 144) >> 2] + a),
|
|
(q[(v + 84) >> 2] = q[(a + 148) >> 2] + a),
|
|
(q[(v + 92) >> 2] = q[(a + 152) >> 2] + a),
|
|
(q[(v + 96) >> 2] = q[(a + 156) >> 2] + a),
|
|
(q[(v + 100) >> 2] = q[(a + 160) >> 2] + a),
|
|
(q[(v + 108) >> 2] = q[(a + 164) >> 2] + a),
|
|
(q[(v + 112) >> 2] = q[(a + 168) >> 2] + a),
|
|
(q[(v + 116) >> 2] = q[(a + 172) >> 2] + a),
|
|
(q[(v + 124) >> 2] = q[(a + 176) >> 2] + a),
|
|
(q[(v + 128) >> 2] = q[(a + 180) >> 2] + a),
|
|
(q[(v + 132) >> 2] = q[(a + 184) >> 2] + a),
|
|
(q[(v + 136) >> 2] = q[(a + 188) >> 2] + a),
|
|
(q[(v + 140) >> 2] = q[(a + 192) >> 2] + a),
|
|
(q[(v + 144) >> 2] = q[(a + 196) >> 2] + a),
|
|
(q[(v + 148) >> 2] = q[(a + 200) >> 2] + a),
|
|
(q[(v + 152) >> 2] = q[(a + 204) >> 2] + a),
|
|
(q[(v + 156) >> 2] = q[(a + 208) >> 2] + a),
|
|
(q[(v + 164) >> 2] = q[(a + 212) >> 2] + a),
|
|
(q[(v + 168) >> 2] = q[(a + 216) >> 2] + a),
|
|
(q[(v + 172) >> 2] = q[(a + 220) >> 2] + a),
|
|
(q[(v + 176) >> 2] = q[(a + 224) >> 2] + a),
|
|
(q[(v + 180) >> 2] = q[(a + 228) >> 2] + a),
|
|
(q[(v + 184) >> 2] = q[(a + 232) >> 2] + a),
|
|
(q[(v + 188) >> 2] = q[(a + 236) >> 2] + a),
|
|
(q[(v + 192) >> 2] = q[(a + 240) >> 2] + a),
|
|
(q[(v + 196) >> 2] = q[(a + 244) >> 2] + a),
|
|
(q[(v + 200) >> 2] = q[(a + 248) >> 2] + a),
|
|
(q[(v + 204) >> 2] = q[(a + 252) >> 2] + a),
|
|
(q[(v + 208) >> 2] = q[(a + 256) >> 2] + a),
|
|
(q[(v + 212) >> 2] = q[(a + 260) >> 2] + a),
|
|
(q[(v + 216) >> 2] = q[(a + 264) >> 2] + a),
|
|
(q[(v + 220) >> 2] = q[(a + 268) >> 2] + a),
|
|
(q[(v + 224) >> 2] = q[(a + 272) >> 2] + a),
|
|
(q[(v + 228) >> 2] = q[(a + 276) >> 2] + a),
|
|
(q[(v + 232) >> 2] = q[(a + 280) >> 2] + a),
|
|
(q[(v + 236) >> 2] = q[(a + 284) >> 2] + a),
|
|
(q[(v + 244) >> 2] = q[(a + 288) >> 2] + a),
|
|
(q[(v + 248) >> 2] = q[(a + 292) >> 2] + a),
|
|
(q[(v + 272) >> 2] = q[(a + 296) >> 2] + a),
|
|
(q[(v + 276) >> 2] = q[(a + 300) >> 2] + a),
|
|
(q[(v + 280) >> 2] = q[(a + 304) >> 2] + a),
|
|
(q[(v + 292) >> 2] = q[(a + 308) >> 2] + a),
|
|
(q[(v + 296) >> 2] = q[(a + 312) >> 2] + a),
|
|
(q[(v + 300) >> 2] = q[(a + 316) >> 2] + a),
|
|
(q[(v + 304) >> 2] = q[(a + 320) >> 2] + a),
|
|
(q[(v + 308) >> 2] = q[(a + 324) >> 2] + a),
|
|
(q[(v + 312) >> 2] = q[(a + 328) >> 2] + a),
|
|
(q[(v + 316) >> 2] = q[(a + 332) >> 2] + a),
|
|
(q[(v + 328) >> 2] = q[(a + 336) >> 2] + a),
|
|
(q[(v + 332) >> 2] = q[(a + 340) >> 2] + a),
|
|
(q[(v + 336) >> 2] = q[(a + 344) >> 2] + a),
|
|
(q[(v + 348) >> 2] = q[(a + 348) >> 2] + a),
|
|
(q[(v + 360) >> 2] = q[(a + 352) >> 2] + a),
|
|
(q[(v + 364) >> 2] = q[(a + 356) >> 2] + a),
|
|
(q[(v + 368) >> 2] = q[(a + 360) >> 2] + a),
|
|
(q[(v + 352) >> 2] = q[(a + 364) >> 2] + a),
|
|
(q[(v + 356) >> 2] = q[(a + 368) >> 2] + a),
|
|
(q[(v + 488) >> 2] = q[(a + 372) >> 2] + a),
|
|
(q[(v + 492) >> 2] = q[(a + 376) >> 2] + a),
|
|
(q[(v + 496) >> 2] = q[(a + 380) >> 2] + a),
|
|
(q[(v + 500) >> 2] = q[(a + 384) >> 2] + a),
|
|
(q[(v + 504) >> 2] = q[(a + 388) >> 2] + a),
|
|
(q[(v + 508) >> 2] = q[(a + 392) >> 2] + a),
|
|
(q[(v + 512) >> 2] = q[(a + 396) >> 2] + a),
|
|
(q[(v + 516) >> 2] = q[(a + 400) >> 2] + a),
|
|
(q[(v + 520) >> 2] = q[(a + 404) >> 2] + a),
|
|
(q[(v + 524) >> 2] = q[(a + 408) >> 2] + a),
|
|
(q[(v + 528) >> 2] = q[(a + 412) >> 2] + a),
|
|
(q[(v + 532) >> 2] = q[(a + 416) >> 2] + a),
|
|
(q[(v + 536) >> 2] = q[(a + 420) >> 2] + a),
|
|
(q[(v + 540) >> 2] = q[(a + 424) >> 2] + a),
|
|
(q[(v + 544) >> 2] = q[(a + 428) >> 2] + a),
|
|
(q[(v + 548) >> 2] = q[(a + 432) >> 2] + a),
|
|
(q[(v + 552) >> 2] = q[(a + 436) >> 2] + a),
|
|
(q[(v + 556) >> 2] = q[(a + 440) >> 2] + a),
|
|
(q[(v + 560) >> 2] = q[(a + 444) >> 2] + a),
|
|
(q[(v + 564) >> 2] = q[(a + 448) >> 2] + a),
|
|
(q[(v + 568) >> 2] = q[(a + 452) >> 2] + a),
|
|
(q[(v + 572) >> 2] = q[(a + 456) >> 2] + a),
|
|
(q[(v + 576) >> 2] = q[(a + 460) >> 2] + a),
|
|
(q[(v + 580) >> 2] = q[(a + 464) >> 2] + a),
|
|
W >>> 0 < 2 ||
|
|
((q[(v + 104) >> 2] = q[(a + 468) >> 2] + a),
|
|
W >>> 0 < 4) ||
|
|
((q[(v + 260) >> 2] = q[(a + 472) >> 2] + a),
|
|
(q[(v + 264) >> 2] = q[(a + 476) >> 2] + a),
|
|
(q[(v + 268) >> 2] = q[(a + 480) >> 2] + a),
|
|
(q[(v + 88) >> 2] = q[(a + 484) >> 2] + a),
|
|
(q[(v + 120) >> 2] = q[(a + 488) >> 2] + a),
|
|
(q[(v + 160) >> 2] = q[(a + 492) >> 2] + a),
|
|
(q[(v + 584) >> 2] = q[(a + 496) >> 2] + a),
|
|
(q[(v + 588) >> 2] = q[(a + 500) >> 2] + a),
|
|
(q[(v + 592) >> 2] = q[(a + 504) >> 2] + a),
|
|
(q[(v + 596) >> 2] = q[(a + 508) >> 2] + a),
|
|
(q[(v + 600) >> 2] = q[(a + 512) >> 2] + a),
|
|
(q[(v + 604) >> 2] = q[(a + 516) >> 2] + a),
|
|
(q[(v + 240) >> 2] = q[(a + 520) >> 2] + a),
|
|
(q[(v + 252) >> 2] = q[(a + 524) >> 2] + a),
|
|
(q[(v + 256) >> 2] = q[(a + 528) >> 2] + a),
|
|
(q[(v + 372) >> 2] = q[(a + 532) >> 2] + a),
|
|
(q[(v + 376) >> 2] = q[(a + 536) >> 2] + a),
|
|
(q[(v + 380) >> 2] = q[(a + 540) >> 2] + a),
|
|
(q[(v + 384) >> 2] = q[(a + 544) >> 2] + a),
|
|
(q[(v + 388) >> 2] = q[(a + 548) >> 2] + a),
|
|
(q[(v + 392) >> 2] = q[(a + 552) >> 2] + a),
|
|
(q[(v + 396) >> 2] = q[(a + 556) >> 2] + a),
|
|
(q[(v + 400) >> 2] = q[(a + 560) >> 2] + a),
|
|
(q[(v + 416) >> 2] = q[(a + 564) >> 2] + a),
|
|
(q[(v + 420) >> 2] = q[(a + 568) >> 2] + a),
|
|
(q[(v + 424) >> 2] = q[(a + 572) >> 2] + a),
|
|
(q[(v + 440) >> 2] = q[(a + 576) >> 2] + a),
|
|
(q[(v + 444) >> 2] = q[(a + 580) >> 2] + a),
|
|
(q[(v + 448) >> 2] = q[(a + 584) >> 2] + a),
|
|
(q[(v + 464) >> 2] = q[(a + 588) >> 2] + a),
|
|
(q[(v + 468) >> 2] = q[(a + 592) >> 2] + a),
|
|
(q[(v + 472) >> 2] = q[(a + 596) >> 2] + a),
|
|
(q[(v + 476) >> 2] = q[(a + 600) >> 2] + a),
|
|
(q[(v + 480) >> 2] = q[(a + 604) >> 2] + a),
|
|
(q[(v + 484) >> 2] = q[(a + 608) >> 2] + a),
|
|
4 != (0 | W) &&
|
|
((q[(v + 284) >> 2] = q[(a + 612) >> 2] + a),
|
|
(q[(v + 288) >> 2] = q[(a + 616) >> 2] + a),
|
|
(q[(v + 320) >> 2] = q[(a + 620) >> 2] + a),
|
|
(q[(v + 324) >> 2] = q[(a + 624) >> 2] + a),
|
|
(q[(v + 340) >> 2] = q[(a + 628) >> 2] + a),
|
|
(q[(v + 344) >> 2] = q[(a + 632) >> 2] + a),
|
|
(q[(v + 404) >> 2] = q[(a + 636) >> 2] + a),
|
|
(q[(v + 408) >> 2] = q[(a + 640) >> 2] + a),
|
|
(q[(v + 412) >> 2] = q[(a + 644) >> 2] + a),
|
|
(q[(v + 428) >> 2] = q[(a + 648) >> 2] + a),
|
|
(q[(v + 432) >> 2] = q[(a + 652) >> 2] + a),
|
|
(q[(v + 436) >> 2] = q[(a + 656) >> 2] + a),
|
|
(q[(v + 452) >> 2] = q[(a + 660) >> 2] + a),
|
|
(q[(v + 456) >> 2] = q[(a + 664) >> 2] + a),
|
|
(q[(v + 460) >> 2] = q[(a + 668) >> 2] + a)));
|
|
}
|
|
|
|
function oa(a, v, $) {
|
|
var aa = 0;
|
|
a: {
|
|
if (8 == (0 | v)) v = qa($);
|
|
else {
|
|
if (
|
|
((aa = 28),
|
|
(3 & v) |
|
|
(1 !=
|
|
(0 |
|
|
(function(a) {
|
|
for (var $o = 0, ap = 0;
|
|
(ap = $o), a;)
|
|
(a &= a - 1), ($o = ($o + 1) | 0);
|
|
return ap;
|
|
})(v >>> 2))))
|
|
)
|
|
break a;
|
|
if (((aa = 48), (-64 - v) >>> 0 < $ >>> 0)) break a;
|
|
v = (function(a, Vk) {
|
|
var vl,
|
|
wl,
|
|
ql = 0,
|
|
tl = 0,
|
|
ul = 0;
|
|
if (((tl = a >>> 0 > (ql = 16) ? a : 16) + -1) & tl)
|
|
for (;
|
|
(ql = (a = ql) << 1), a >>> 0 < tl >>> 0;);
|
|
else a = tl;
|
|
return (-64 - a) >>> 0 <= Vk >>> 0 ?
|
|
((q[2086] = 48), 0) :
|
|
(ql = qa(
|
|
(12 +
|
|
(((tl = Vk >>> 0 < 11 ? 16 : (Vk + 11) & -8) +
|
|
a) |
|
|
0)) |
|
|
0
|
|
)) ?
|
|
((Vk = (ql + -8) | 0),
|
|
ql & (a + -1) ?
|
|
((ul =
|
|
((-8 & (wl = q[(vl = (ql + -4) | 0) >> 2])) -
|
|
(ql =
|
|
((a =
|
|
15 <
|
|
((ql =
|
|
(((((a + ql) | 0) - 1) & (0 - a)) - 8) |
|
|
0) -
|
|
Vk) >>>
|
|
0 ?
|
|
ql :
|
|
(a + ql) | 0) -
|
|
Vk) |
|
|
0)) |
|
|
0),
|
|
3 & wl ?
|
|
((q[(a + 4) >> 2] =
|
|
ul | (1 & q[(a + 4) >> 2]) | 2),
|
|
(q[(4 + (ul = (a + ul) | 0)) >> 2] =
|
|
1 | q[(4 + ul) >> 2]),
|
|
(q[vl >> 2] = ql | (1 & q[vl >> 2]) | 2),
|
|
(q[(a + 4) >> 2] = 1 | q[(a + 4) >> 2]),
|
|
za(Vk, ql)) :
|
|
((Vk = q[Vk >> 2]),
|
|
(q[(a + 4) >> 2] = ul),
|
|
(q[a >> 2] = Vk + ql))) :
|
|
(a = Vk),
|
|
3 & (Vk = q[(a + 4) >> 2]) &&
|
|
((ql = -8 & Vk) >>> 0 <= (tl + 16) >>> 0 ||
|
|
((q[(a + 4) >> 2] = tl | (1 & Vk) | 2),
|
|
(q[((Vk = (a + tl) | 0) + 4) >> 2] =
|
|
3 | (tl = (ql - tl) | 0)),
|
|
(q[(4 + (ql = (a + ql) | 0)) >> 2] =
|
|
1 | q[(ql + 4) >> 2]),
|
|
za(Vk, tl))),
|
|
(a + 8) | 0) :
|
|
0;
|
|
})(16 < v >>> 0 ? v : 16, $);
|
|
}
|
|
if (!v) return 1;
|
|
(q[a >> 2] = v),
|
|
(aa = 0);
|
|
}
|
|
return aa;
|
|
}
|
|
|
|
function pa(a) {
|
|
var da,
|
|
v = 0,
|
|
$ = 0,
|
|
ba = 0,
|
|
ca = 0,
|
|
ea = 0,
|
|
fa = 0,
|
|
ha = 0;
|
|
a: if (a) {
|
|
da =
|
|
((ba = (a + -8) | 0) + (a = -8 & ($ = q[(a + -4) >> 2]))) |
|
|
0;
|
|
b: if (!(1 & $)) {
|
|
if (!(3 & $)) break a;
|
|
if ((ba = (ba - ($ = q[ba >> 2])) | 0) >>> 0 < t[2091])
|
|
break a;
|
|
if (((a = (a + $) | 0), q[2092] != (0 | ba)))
|
|
if ($ >>> 0 <= 255)
|
|
(ca = q[(ba + 8) >> 2]),
|
|
($ >>>= 3),
|
|
(0 | (v = q[(ba + 12) >> 2])) == (0 | ca) ?
|
|
((ha = q[2087] & dd($)), (q[2087] = ha)) :
|
|
((q[(ca + 12) >> 2] = v), (q[(v + 8) >> 2] = ca));
|
|
else {
|
|
if (
|
|
((fa = q[(ba + 24) >> 2]),
|
|
(0 | ba) != (0 | ($ = q[(ba + 12) >> 2])))
|
|
)
|
|
(v = q[(ba + 8) >> 2]),
|
|
(q[(v + 12) >> 2] = $),
|
|
(q[($ + 8) >> 2] = v);
|
|
else if (
|
|
(v =
|
|
(v = q[(ca = (ba + 20) | 0) >> 2]) ||
|
|
q[(ca = (ba + 16) | 0) >> 2])
|
|
) {
|
|
for (;
|
|
(ea = ca),
|
|
(v = q[(ca = (($ = v) + 20) | 0) >> 2]) ||
|
|
((ca = ($ + 16) | 0), (v = q[($ + 16) >> 2]));
|
|
|
|
);
|
|
q[ea >> 2] = 0;
|
|
} else $ = 0;
|
|
if (fa) {
|
|
ca = q[(ba + 28) >> 2];
|
|
e: {
|
|
if (
|
|
q[(v = (8652 + (ca << 2)) | 0) >> 2] ==
|
|
(0 | ba)
|
|
) {
|
|
if ((q[v >> 2] = $)) break e;
|
|
(ha = q[2088] & dd(ca)), (q[2088] = ha);
|
|
break b;
|
|
}
|
|
if (!(q[
|
|
(fa +
|
|
(q[(fa + 16) >> 2] == (0 | ba) ? 16 : 20)) >>
|
|
2
|
|
] = $))
|
|
break b;
|
|
}
|
|
(q[($ + 24) >> 2] = fa),
|
|
(v = q[(ba + 16) >> 2]) &&
|
|
((q[($ + 16) >> 2] = v), (q[(v + 24) >> 2] = $)),
|
|
(v = q[(ba + 20) >> 2]) &&
|
|
((q[($ + 20) >> 2] = v), (q[(v + 24) >> 2] = $));
|
|
}
|
|
}
|
|
else if (3 == (3 & ($ = q[(4 + da) >> 2])))
|
|
return (
|
|
(q[2089] = a),
|
|
(q[(4 + da) >> 2] = -2 & $),
|
|
(q[(ba + 4) >> 2] = 1 | a),
|
|
(q[(a + ba) >> 2] = a)
|
|
);
|
|
}
|
|
if (!(da >>> 0 <= ba >>> 0) && 1 & ($ = q[(4 + da) >> 2])) {
|
|
f: {
|
|
if (!(2 & $)) {
|
|
if (q[2093] == (0 | da)) {
|
|
if (
|
|
((q[2093] = ba),
|
|
(a = (q[2090] + a) | 0),
|
|
(q[2090] = a),
|
|
(q[(ba + 4) >> 2] = 1 | a),
|
|
q[2092] != (0 | ba))
|
|
)
|
|
break a;
|
|
return (q[2089] = 0), (q[2092] = 0);
|
|
}
|
|
if (q[2092] == (0 | da))
|
|
return (
|
|
(q[2092] = ba),
|
|
(a = (q[2089] + a) | 0),
|
|
(q[2089] = a),
|
|
(q[(ba + 4) >> 2] = 1 | a),
|
|
(q[(a + ba) >> 2] = a)
|
|
);
|
|
a = ((-8 & $) + a) | 0;
|
|
g: if ($ >>> 0 <= 255)
|
|
($ >>>= 3),
|
|
(0 | (v = q[(8 + da) >> 2])) ==
|
|
(0 | (ca = q[(12 + da) >> 2])) ?
|
|
((ha = q[2087] & dd($)), (q[2087] = ha)) :
|
|
((q[(v + 12) >> 2] = ca),
|
|
(q[(ca + 8) >> 2] = v));
|
|
else {
|
|
if (
|
|
((fa = q[(24 + da) >> 2]),
|
|
(0 | da) != (0 | ($ = q[(12 + da) >> 2])))
|
|
)
|
|
(v = q[(8 + da) >> 2]),
|
|
(q[(v + 12) >> 2] = $),
|
|
(q[($ + 8) >> 2] = v);
|
|
else if (
|
|
(v =
|
|
(v = q[(ca = (20 + da) | 0) >> 2]) ||
|
|
q[(ca = (16 + da) | 0) >> 2])
|
|
) {
|
|
for (;
|
|
(ea = ca),
|
|
(v = q[(ca = (($ = v) + 20) | 0) >> 2]) ||
|
|
((ca = ($ + 16) | 0), (v = q[($ + 16) >> 2]));
|
|
|
|
);
|
|
q[ea >> 2] = 0;
|
|
} else $ = 0;
|
|
if (fa) {
|
|
ca = q[(28 + da) >> 2];
|
|
j: {
|
|
if (
|
|
q[(v = (8652 + (ca << 2)) | 0) >> 2] ==
|
|
(0 | da)
|
|
) {
|
|
if ((q[v >> 2] = $)) break j;
|
|
(ha = q[2088] & dd(ca)), (q[2088] = ha);
|
|
break g;
|
|
}
|
|
if (!(q[
|
|
(fa +
|
|
(q[(fa + 16) >> 2] == (0 | da) ?
|
|
16 :
|
|
20)) >>
|
|
2
|
|
] = $))
|
|
break g;
|
|
}
|
|
(q[($ + 24) >> 2] = fa),
|
|
(v = q[(16 + da) >> 2]) &&
|
|
((q[($ + 16) >> 2] = v),
|
|
(q[(v + 24) >> 2] = $)),
|
|
(v = q[(20 + da) >> 2]) &&
|
|
((q[($ + 20) >> 2] = v),
|
|
(q[(v + 24) >> 2] = $));
|
|
}
|
|
}
|
|
if (
|
|
((q[(ba + 4) >> 2] = 1 | a),
|
|
(q[(a + ba) >> 2] = a),
|
|
q[2092] != (0 | ba))
|
|
)
|
|
break f;
|
|
return (q[2089] = a);
|
|
}
|
|
(q[(4 + da) >> 2] = -2 & $),
|
|
(q[(ba + 4) >> 2] = 1 | a),
|
|
(q[(a + ba) >> 2] = a);
|
|
}
|
|
if (a >>> 0 <= 255)
|
|
return (
|
|
($ = (8388 + ((a >>>= 3) << 3)) | 0),
|
|
(a =
|
|
(v = q[2087]) & (a = 1 << a) ?
|
|
q[($ + 8) >> 2] :
|
|
((q[2087] = a | v), $)),
|
|
(q[($ + 8) >> 2] = ba),
|
|
(q[(a + 12) >> 2] = ba),
|
|
(q[(ba + 12) >> 2] = $),
|
|
(q[(ba + 8) >> 2] = a)
|
|
);
|
|
(q[(ba + 16) >> 2] = 0),
|
|
(v = q[(ba + 20) >> 2] = 0),
|
|
(ca = a >>> 8) &&
|
|
((v = 31),
|
|
16777215 < a >>> 0 ||
|
|
((v = ca),
|
|
(v =
|
|
(28 +
|
|
(((v =
|
|
((((v =
|
|
(v <<= ca = ((ca + 1048320) >>> 16) & 8) <<
|
|
(fa = ((v + 520192) >>> 16) & 4)) <<
|
|
(ea = ((v + 245760) >>> 16) & 2)) >>>
|
|
15) -
|
|
(ea | ca | fa)) |
|
|
0) <<
|
|
1) |
|
|
((a >>> (v + 21)) & 1))) |
|
|
0))),
|
|
(ea = (8652 + ((q[(($ = ba) + 28) >> 2] = v) << 2)) | 0);
|
|
m: if ((ca = q[2088]) & ($ = 1 << v)) {
|
|
(ca = a << (31 == (0 | v) ? 0 : (25 - (v >>> 1)) | 0)),
|
|
($ = q[ea >> 2]);
|
|
n: {
|
|
for (;;) {
|
|
if ((-8 & q[((v = $) + 4) >> 2]) == (0 | a)) break n;
|
|
if (
|
|
(($ = ca >>> 29),
|
|
(ca <<= 1), !($ = q[(16 + (ea = (v + (4 & $)) | 0)) >> 2]))
|
|
)
|
|
break;
|
|
}
|
|
(q[(ea + 16) >> 2] = ba),
|
|
(q[(ba + 12) >> 2] = ba),
|
|
(q[(ba + 24) >> 2] = v),
|
|
(q[(ba + 8) >> 2] = ba);
|
|
break m;
|
|
}
|
|
(a = q[(v + 8) >> 2]),
|
|
(q[(a + 12) >> 2] = ba),
|
|
(q[(v + 8) >> 2] = ba),
|
|
(q[(ba + 24) >> 2] = 0),
|
|
(q[(ba + 12) >> 2] = v),
|
|
(q[(ba + 8) >> 2] = a);
|
|
} else
|
|
(q[2088] = $ | ca),
|
|
(q[ea >> 2] = ba),
|
|
(q[(ba + 12) >> 2] = ba),
|
|
(q[(ba + 24) >> 2] = ea),
|
|
(q[(ba + 8) >> 2] = ba);
|
|
if (((a = (q[2095] + -1) | 0), !(q[2095] = a))) {
|
|
for (ba = 8804;
|
|
(ba = ((a = q[ba >> 2]) + 8) | 0), a;);
|
|
q[2095] = -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
function qa(a) {
|
|
var sa,
|
|
ia = 0,
|
|
ja = 0,
|
|
ka = 0,
|
|
la = 0,
|
|
ma = 0,
|
|
na = 0,
|
|
oa = 0,
|
|
pa = 0,
|
|
qa = 0,
|
|
ra = 0,
|
|
ua = 0;
|
|
L = sa = (L - 16) | 0;
|
|
a: {
|
|
b: {
|
|
c: {
|
|
d: {
|
|
e: {
|
|
f: {
|
|
g: {
|
|
h: {
|
|
i: {
|
|
j: {
|
|
k: {
|
|
if (a >>> 0 <= 244) {
|
|
if (
|
|
3 &
|
|
(ia =
|
|
(ma = q[2087]) >>>
|
|
(a =
|
|
(na =
|
|
a >>> 0 < 11 ?
|
|
16 :
|
|
(a + 11) & -8) >>> 3))
|
|
) {
|
|
(a =
|
|
((ia =
|
|
q[
|
|
(8396 +
|
|
(la =
|
|
(ja =
|
|
(a + (1 & (-1 ^ ia))) |
|
|
0) << 3)) >>
|
|
2
|
|
]) +
|
|
8) |
|
|
0),
|
|
(0 | (ka = q[(ia + 8) >> 2])) ==
|
|
(0 | (la = (la + 8388) | 0)) ?
|
|
((ua = dd(ja) & ma),
|
|
(q[2087] = ua)) :
|
|
((q[(ka + 12) >> 2] = la),
|
|
(q[(la + 8) >> 2] = ka)),
|
|
(q[(ia + 4) >> 2] = 3 | (ja <<= 3)),
|
|
(q[
|
|
(4 + (ia = (ia + ja) | 0)) >> 2
|
|
] = 1 | q[(ia + 4) >> 2]);
|
|
break a;
|
|
}
|
|
if (na >>> 0 <= (pa = q[2089]) >>> 0)
|
|
break k;
|
|
if (ia) {
|
|
(ja = ia =
|
|
((a =
|
|
(((0 -
|
|
(a =
|
|
((0 - (ja = 2 << a)) | ja) &
|
|
(ia << a))) &
|
|
a) -
|
|
1) |
|
|
0) >>>
|
|
12) &
|
|
16),
|
|
(ia =
|
|
q[
|
|
(8396 +
|
|
(ka =
|
|
(ja =
|
|
(((ja =
|
|
(ja |= ia =
|
|
((a >>>= ia) >>> 5) &
|
|
8) |
|
|
(ia =
|
|
((a >>>= ia) >>> 2) &
|
|
4) |
|
|
(ia =
|
|
((a >>>= ia) >>> 1) &
|
|
2)) |
|
|
(ia =
|
|
((a >>>= ia) >>> 1) &
|
|
1)) +
|
|
(a >>> ia)) |
|
|
0) << 3)) >>
|
|
2
|
|
]),
|
|
(0 | (a = q[(ia + 8) >> 2])) ==
|
|
(0 | (ka = (ka + 8388) | 0)) ?
|
|
((ma = dd(ja) & ma),
|
|
(q[2087] = ma)) :
|
|
((q[(a + 12) >> 2] = ka),
|
|
(q[(ka + 8) >> 2] = a)),
|
|
(a = (ia + 8) | 0),
|
|
(q[(ia + 4) >> 2] = 3 | na),
|
|
(q[
|
|
(4 + (oa = (ia + na) | 0)) >> 2
|
|
] =
|
|
1 | (la = ((ja <<= 3) - na) | 0)),
|
|
(q[(ia + ja) >> 2] = la),
|
|
pa &&
|
|
((ia =
|
|
(8388 +
|
|
((ja = pa >>> 3) << 3)) |
|
|
0),
|
|
(ka = q[2092]),
|
|
(ja =
|
|
(ja = 1 << ja) & ma ?
|
|
q[(ia + 8) >> 2] :
|
|
((q[2087] = ja | ma), ia)),
|
|
(q[(ia + 8) >> 2] = ka),
|
|
(q[(ja + 12) >> 2] = ka),
|
|
(q[(ka + 12) >> 2] = ia),
|
|
(q[(ka + 8) >> 2] = ja)),
|
|
(q[2092] = oa),
|
|
(q[2089] = la);
|
|
break a;
|
|
}
|
|
if (!(ra = q[2088])) break k;
|
|
for (
|
|
ja = ia =
|
|
((a = ((ra & (0 - ra)) - 1) | 0) >>>
|
|
12) &
|
|
16,
|
|
ia =
|
|
q[
|
|
(8652 +
|
|
((((ja =
|
|
(ja |= ia =
|
|
((a >>>= ia) >>> 5) & 8) |
|
|
(ia =
|
|
((a >>>= ia) >>> 2) & 4) |
|
|
(ia =
|
|
((a >>>= ia) >>> 1) &
|
|
2)) |
|
|
(ia =
|
|
((a >>>= ia) >>> 1) &
|
|
1)) +
|
|
(a >>> ia)) <<
|
|
2)) >>
|
|
2
|
|
],
|
|
ka =
|
|
((-8 & q[(ia + 4) >> 2]) - na) |
|
|
0,
|
|
ja = ia;
|
|
(a =
|
|
(a = q[(ja + 16) >> 2]) ||
|
|
q[(ja + 20) >> 2]);
|
|
|
|
)
|
|
(ka = (ja =
|
|
(la =
|
|
((-8 & q[(a + 4) >> 2]) - na) |
|
|
0) >>>
|
|
0 <
|
|
ka >>> 0) ?
|
|
la :
|
|
ka),
|
|
(ia = ja ? a : ia),
|
|
(ja = a);
|
|
if (
|
|
((qa = q[(ia + 24) >> 2]),
|
|
(0 | (la = q[(ia + 12) >> 2])) !=
|
|
(0 | ia))
|
|
) {
|
|
(a = q[(ia + 8) >> 2]),
|
|
(q[(a + 12) >> 2] = la),
|
|
(q[(la + 8) >> 2] = a);
|
|
break b;
|
|
}
|
|
if (!(a = q[(ja = (ia + 20) | 0) >> 2])) {
|
|
if (!(a = q[(ia + 16) >> 2])) break j;
|
|
ja = (ia + 16) | 0;
|
|
}
|
|
for (;
|
|
(oa = ja),
|
|
(a =
|
|
q[
|
|
(ja = ((la = a) + 20) | 0) >> 2
|
|
]) ||
|
|
((ja = (la + 16) | 0),
|
|
(a = q[(la + 16) >> 2]));
|
|
|
|
);
|
|
q[oa >> 2] = 0;
|
|
break b;
|
|
}
|
|
if (
|
|
((na = -1), !(4294967231 < a >>> 0) &&
|
|
((na = -8 & (ia = (a + 11) | 0)),
|
|
(pa = q[2088])))
|
|
) {
|
|
(ja = (0 - na) | 0),
|
|
(ma = 0),
|
|
(ia >>>= 8) &&
|
|
((ma = 31),
|
|
16777215 < na >>> 0 ||
|
|
(ma =
|
|
(28 +
|
|
(((a =
|
|
((((ma =
|
|
(ia <<= ka =
|
|
((ia + 1048320) >>>
|
|
16) &
|
|
8) <<
|
|
(a =
|
|
((ia + 520192) >>> 16) &
|
|
4)) <<
|
|
(ia =
|
|
((ma + 245760) >>> 16) &
|
|
2)) >>>
|
|
15) -
|
|
(ia | a | ka)) |
|
|
0) <<
|
|
1) |
|
|
((na >>> (a + 21)) & 1))) |
|
|
0));
|
|
q: {
|
|
r: {
|
|
if (
|
|
(ka = q[(8652 + (ma << 2)) >> 2])
|
|
)
|
|
for (
|
|
ia =
|
|
na <<
|
|
(31 == (0 | ma) ?
|
|
0 :
|
|
(25 - (ma >>> 1)) | 0),
|
|
a = 0;;
|
|
|
|
) {
|
|
if (!(
|
|
ja >>> 0 <=
|
|
(oa =
|
|
((-8 &
|
|
q[(ka + 4) >> 2]) -
|
|
na) |
|
|
0) >>>
|
|
0 ||
|
|
((la = ka), (ja = oa))
|
|
)) {
|
|
(ja = 0), (a = ka);
|
|
break r;
|
|
}
|
|
if (
|
|
((oa = q[(ka + 20) >> 2]),
|
|
(ka =
|
|
q[
|
|
(16 +
|
|
((((ia >>> 29) & 4) +
|
|
ka) |
|
|
0)) >>
|
|
2
|
|
]),
|
|
(a =
|
|
oa && (0 | oa) != (0 | ka) ?
|
|
oa :
|
|
a),
|
|
(ia <<= 0 != (0 | ka)), !ka)
|
|
)
|
|
break;
|
|
}
|
|
else a = 0;
|
|
if (!(a | la)) {
|
|
if (!(a =
|
|
((0 - (a = 2 << ma)) | a) &
|
|
pa))
|
|
break k;
|
|
(ka = ia =
|
|
((a =
|
|
((a & (0 - a)) - 1) | 0) >>>
|
|
12) &
|
|
16),
|
|
(a =
|
|
q[
|
|
(8652 +
|
|
((((ka =
|
|
(ka |= ia =
|
|
((a >>>= ia) >>> 5) &
|
|
8) |
|
|
(ia =
|
|
((a >>>= ia) >>> 2) &
|
|
4) |
|
|
(ia =
|
|
((a >>>= ia) >>> 1) &
|
|
2)) |
|
|
(ia =
|
|
((a >>>= ia) >>> 1) &
|
|
1)) +
|
|
(a >>> ia)) <<
|
|
2)) >>
|
|
2
|
|
]);
|
|
}
|
|
if (!a) break q;
|
|
}
|
|
for (;
|
|
(ja = (ia =
|
|
(ka =
|
|
((-8 & q[(a + 4) >> 2]) - na) |
|
|
0) >>>
|
|
0 <
|
|
ja >>> 0) ?
|
|
ka :
|
|
ja),
|
|
(la = ia ? a : la),
|
|
(a =
|
|
(ia = q[(a + 16) >> 2]) ||
|
|
q[(a + 20) >> 2]);
|
|
|
|
);
|
|
}
|
|
if (!(!la |
|
|
(ja >>> 0 >= (q[2089] - na) >>> 0)
|
|
)) {
|
|
if (
|
|
((oa = q[(la + 24) >> 2]),
|
|
(0 | la) !=
|
|
(0 | (ia = q[(la + 12) >> 2])))
|
|
) {
|
|
(a = q[(la + 8) >> 2]),
|
|
(q[(a + 12) >> 2] = ia),
|
|
(q[(ia + 8) >> 2] = a);
|
|
break c;
|
|
}
|
|
if (!(a = q[(ka = (la + 20) | 0) >> 2])) {
|
|
if (!(a = q[(la + 16) >> 2]))
|
|
break i;
|
|
ka = (la + 16) | 0;
|
|
}
|
|
for (;
|
|
(ma = ka),
|
|
(a =
|
|
q[
|
|
(ka = ((ia = a) + 20) | 0) >>
|
|
2
|
|
]) ||
|
|
((ka = (ia + 16) | 0),
|
|
(a = q[(ia + 16) >> 2]));
|
|
|
|
);
|
|
q[ma >> 2] = 0;
|
|
break c;
|
|
}
|
|
}
|
|
}
|
|
if (na >>> 0 <= (ia = q[2089]) >>> 0) {
|
|
(a = q[2092]),
|
|
16 <= (ja = (ia - na) | 0) >>> 0 ?
|
|
((q[2089] = ja),
|
|
(q[2092] = ka = (a + na) | 0),
|
|
(q[(ka + 4) >> 2] = 1 | ja),
|
|
(q[(a + ia) >> 2] = ja),
|
|
(q[(a + 4) >> 2] = 3 | na)) :
|
|
((q[2092] = 0),
|
|
(q[2089] = 0),
|
|
(q[(a + 4) >> 2] = 3 | ia),
|
|
(q[(4 + (ia = (a + ia) | 0)) >> 2] =
|
|
1 | q[(ia + 4) >> 2])),
|
|
(a = (a + 8) | 0);
|
|
break a;
|
|
}
|
|
if (na >>> 0 < (ka = q[2090]) >>> 0) {
|
|
(q[2090] = ia = (ka - na) | 0),
|
|
(a = q[2093]),
|
|
(q[2093] = ja = (a + na) | 0),
|
|
(q[(ja + 4) >> 2] = 1 | ia),
|
|
(q[(a + 4) >> 2] = 3 | na),
|
|
(a = (a + 8) | 0);
|
|
break a;
|
|
}
|
|
if (
|
|
(ja =
|
|
(ma =
|
|
((ja = la = (na + 47) | (a = 0)) +
|
|
(ia = q[2205] ?
|
|
q[2207] :
|
|
((q[2208] = -1),
|
|
(q[2209] = -1),
|
|
(q[2206] = 4096),
|
|
(q[2207] = 4096),
|
|
(q[2205] =
|
|
((12 + sa) & -16) ^
|
|
1431655768),
|
|
(q[2210] = 0),
|
|
(q[2198] = 0),
|
|
4096))) |
|
|
0) & (oa = (0 - ia) | 0)) >>>
|
|
0 <=
|
|
na >>> 0
|
|
)
|
|
break a;
|
|
if (
|
|
(ia = q[2197]) &&
|
|
((qa = ((pa = q[2195]) + ja) | 0) >>> 0 <=
|
|
pa >>> 0) |
|
|
(ia >>> 0 < qa >>> 0)
|
|
)
|
|
break a;
|
|
if (4 & r[8792]) break f;
|
|
v: {
|
|
w: {
|
|
if ((ia = q[2093]))
|
|
for (a = 8796;;) {
|
|
if (
|
|
((pa = q[a >> 2]) +
|
|
q[(a + 4) >> 2]) >>>
|
|
0 >
|
|
ia >>> 0 &&
|
|
pa >>> 0 <= ia >>> 0
|
|
)
|
|
break w;
|
|
if (!(a = q[(a + 8) >> 2])) break;
|
|
}
|
|
if (-1 == (0 | (ia = ea(0)))) break g;
|
|
if (
|
|
((ma = ja),
|
|
((ma =
|
|
(ka = ((a = q[2206]) + -1) | 0) & ia ?
|
|
(((ja - ia) | 0) +
|
|
((ia + ka) & (0 - a))) |
|
|
0 :
|
|
ma) >>>
|
|
0 <=
|
|
na >>> 0) |
|
|
(2147483646 < ma >>> 0))
|
|
)
|
|
break g;
|
|
if (
|
|
(a = q[2197]) &&
|
|
((oa = ((ka = q[2195]) + ma) | 0) >>>
|
|
0 <=
|
|
ka >>> 0) |
|
|
(a >>> 0 < oa >>> 0)
|
|
)
|
|
break g;
|
|
if ((0 | ia) != (0 | (a = ea(ma))))
|
|
break v;
|
|
break e;
|
|
}
|
|
if (
|
|
2147483646 <
|
|
(ma = oa & (ma - ka)) >>> 0
|
|
)
|
|
break g;
|
|
if (
|
|
(0 | (ia = ea(ma))) ==
|
|
((q[a >> 2] + q[(a + 4) >> 2]) | 0)
|
|
)
|
|
break h;
|
|
a = ia;
|
|
}
|
|
if (!(
|
|
((na + 48) >>> 0 <= ma >>> 0) |
|
|
(2147483646 < ma >>> 0) |
|
|
(-1 == (0 | (ia = a)))
|
|
)) {
|
|
if (
|
|
2147483646 <
|
|
(a =
|
|
((a = q[2207]) + ((la - ma) | 0)) &
|
|
(0 - a)) >>>
|
|
0
|
|
)
|
|
break e;
|
|
if (-1 != (0 | ea(a))) {
|
|
ma = (a + ma) | 0;
|
|
break e;
|
|
}
|
|
ea((0 - ma) | 0);
|
|
break g;
|
|
}
|
|
if (-1 != (0 | ia)) break e;
|
|
break g;
|
|
}
|
|
la = 0;
|
|
break b;
|
|
}
|
|
ia = 0;
|
|
break c;
|
|
}
|
|
if (-1 != (0 | ia)) break e;
|
|
}
|
|
q[2198] = 4 | q[2198];
|
|
}
|
|
if (2147483646 < ja >>> 0) break d;
|
|
if (
|
|
((ia = ea(ja)),
|
|
((a = ea(0)) >>> 0 <= ia >>> 0) |
|
|
(-1 == (0 | ia)) |
|
|
(-1 == (0 | a)))
|
|
)
|
|
break d;
|
|
if ((ma = (a - ia) | 0) >>> 0 <= (na + 40) >>> 0)
|
|
break d;
|
|
}
|
|
(a = (q[2195] + ma) | 0),
|
|
(q[2195] = a) >>> 0 > t[2196] && (q[2196] = a);
|
|
x: {
|
|
y: {
|
|
z: {
|
|
if ((ja = q[2093])) {
|
|
for (a = 8796;;) {
|
|
if (
|
|
(((ka = q[a >> 2]) +
|
|
(la = q[(a + 4) >> 2])) |
|
|
0) ==
|
|
(0 | ia)
|
|
)
|
|
break z;
|
|
if (!(a = q[(a + 8) >> 2])) break;
|
|
}
|
|
break y;
|
|
}
|
|
for (
|
|
((a = q[2091]) >>> 0 <= ia >>> 0 && a) ||
|
|
(q[2091] = ia),
|
|
a = 0,
|
|
q[2200] = ma,
|
|
q[2199] = ia,
|
|
q[2095] = -1,
|
|
q[2096] = q[2205],
|
|
q[2202] = 0;
|
|
(q[(8396 + (ja = a << 3)) >> 2] = ka =
|
|
(ja + 8388) | 0),
|
|
(q[(ja + 8400) >> 2] = ka),
|
|
32 != (0 | (a = (a + 1) | 0));
|
|
|
|
);
|
|
(q[2090] = ka =
|
|
((a = (ma + -40) | 0) -
|
|
(ja = (ia + 8) & 7 ? (-8 - ia) & 7 : 0)) |
|
|
0),
|
|
(q[2093] = ja = (ia + ja) | 0),
|
|
(q[(ja + 4) >> 2] = 1 | ka),
|
|
(q[(4 + ((a + ia) | 0)) >> 2] = 40),
|
|
(q[2094] = q[2209]);
|
|
break x;
|
|
}
|
|
if (!(
|
|
(8 & r[(a + 12) | 0]) |
|
|
(ia >>> 0 <= ja >>> 0) |
|
|
(ja >>> 0 < ka >>> 0)
|
|
)) {
|
|
(q[(a + 4) >> 2] = la + ma),
|
|
(q[2093] = ia =
|
|
((a = (ja + 8) & 7 ? (-8 - ja) & 7 : 0) +
|
|
ja) |
|
|
0),
|
|
(ka = (q[2090] + ma) | 0),
|
|
(q[2090] = a = (ka - a) | 0),
|
|
(q[(ia + 4) >> 2] = 1 | a),
|
|
(q[(4 + ((ja + ka) | 0)) >> 2] = 40),
|
|
(q[2094] = q[2209]);
|
|
break x;
|
|
}
|
|
}
|
|
ia >>> 0 < (la = q[2091]) >>> 0 &&
|
|
((q[2091] = ia), (la = 0)),
|
|
(ka = (ia + ma) | 0),
|
|
(a = 8796);
|
|
A: {
|
|
B: {
|
|
C: {
|
|
D: {
|
|
E: {
|
|
F: {
|
|
for (;
|
|
(0 | ka) != q[a >> 2];)
|
|
if (!(a = q[(a + 8) >> 2])) break F;
|
|
if (!(8 & r[(a + 12) | 0])) break E;
|
|
}
|
|
for (a = 8796;;) {
|
|
if (
|
|
(ka = q[a >> 2]) >>> 0 <= ja >>> 0 &&
|
|
ja >>> 0 <
|
|
(la = (ka + q[(a + 4) >> 2]) | 0) >>>
|
|
0
|
|
)
|
|
break D;
|
|
a = q[(a + 8) >> 2];
|
|
}
|
|
}
|
|
if (
|
|
((q[a >> 2] = ia),
|
|
(q[(a + 4) >> 2] = q[(a + 4) >> 2] + ma),
|
|
(q[
|
|
(4 +
|
|
(qa =
|
|
(((ia + 8) & 7 ? (-8 - ia) & 7 : 0) +
|
|
ia) |
|
|
0)) >>
|
|
2
|
|
] = 3 | na),
|
|
(a =
|
|
((((ia =
|
|
(ka +
|
|
((ka + 8) & 7 ? (-8 - ka) & 7 : 0)) |
|
|
0) -
|
|
qa) |
|
|
0) -
|
|
na) |
|
|
0),
|
|
(oa = (na + qa) | 0),
|
|
(0 | ia) == (0 | ja))
|
|
) {
|
|
(q[2093] = oa),
|
|
(a = (q[2090] + a) | 0),
|
|
(q[2090] = a),
|
|
(q[(oa + 4) >> 2] = 1 | a);
|
|
break B;
|
|
}
|
|
if (q[2092] == (0 | ia)) {
|
|
(q[2092] = oa),
|
|
(a = (q[2089] + a) | 0),
|
|
(q[2089] = a),
|
|
(q[(oa + 4) >> 2] = 1 | a),
|
|
(q[(a + oa) >> 2] = a);
|
|
break B;
|
|
}
|
|
if (1 == (3 & (ja = q[(ia + 4) >> 2]))) {
|
|
ra = -8 & ja;
|
|
G: if (ja >>> 0 <= 255)
|
|
(la = ja >>> 3),
|
|
(ja = q[(ia + 8) >> 2]),
|
|
(0 | (ka = q[(ia + 12) >> 2])) ==
|
|
(0 | ja) ?
|
|
((ua = q[2087] & dd(la)),
|
|
(q[2087] = ua)) :
|
|
((q[(ja + 12) >> 2] = ka),
|
|
(q[(ka + 8) >> 2] = ja));
|
|
else {
|
|
if (
|
|
((pa = q[(ia + 24) >> 2]),
|
|
(0 | (ma = q[(ia + 12) >> 2])) !=
|
|
(0 | ia))
|
|
)
|
|
(ja = q[(ia + 8) >> 2]),
|
|
(q[(ja + 12) >> 2] = ma),
|
|
(q[(ma + 8) >> 2] = ja);
|
|
else if (
|
|
(na =
|
|
(na = q[(ka = (ia + 20) | 0) >> 2]) ||
|
|
q[(ka = (ia + 16) | 0) >> 2])
|
|
) {
|
|
for (;
|
|
(ja = ka),
|
|
(na =
|
|
q[
|
|
(ka = ((ma = na) + 20) | 0) >> 2
|
|
]) ||
|
|
((ka = (ma + 16) | 0),
|
|
(na = q[(ma + 16) >> 2]));
|
|
|
|
);
|
|
q[ja >> 2] = 0;
|
|
} else ma = 0;
|
|
if (pa) {
|
|
ja = q[(ia + 28) >> 2];
|
|
J: {
|
|
if (
|
|
q[
|
|
(ka = (8652 + (ja << 2)) | 0) >> 2
|
|
] ==
|
|
(0 | ia)
|
|
) {
|
|
if ((q[ka >> 2] = ma)) break J;
|
|
(ua = q[2088] & dd(ja)),
|
|
(q[2088] = ua);
|
|
break G;
|
|
}
|
|
if (!(q[
|
|
(pa +
|
|
(q[(pa + 16) >> 2] == (0 | ia) ?
|
|
16 :
|
|
20)) >>
|
|
2
|
|
] = ma))
|
|
break G;
|
|
}
|
|
(q[(ma + 24) >> 2] = pa),
|
|
(ja = q[(ia + 16) >> 2]) &&
|
|
((q[(ma + 16) >> 2] = ja),
|
|
(q[(ja + 24) >> 2] = ma)),
|
|
(ja = q[(ia + 20) >> 2]) &&
|
|
((q[(ma + 20) >> 2] = ja),
|
|
(q[(ja + 24) >> 2] = ma));
|
|
}
|
|
}
|
|
(ia = (ia + ra) | 0), (a = (a + ra) | 0);
|
|
}
|
|
if (
|
|
((q[(ia + 4) >> 2] = -2 & q[(ia + 4) >> 2]),
|
|
(q[(oa + 4) >> 2] = 1 | a),
|
|
(q[(a + oa) >> 2] = a) >>> 0 <= 255)
|
|
) {
|
|
(a = (8388 + ((ia = a >>> 3) << 3)) | 0),
|
|
(ia =
|
|
(ja = q[2087]) & (ia = 1 << ia) ?
|
|
q[(a + 8) >> 2] :
|
|
((q[2087] = ia | ja), a)),
|
|
(q[(a + 8) >> 2] = oa),
|
|
(q[(ia + 12) >> 2] = oa),
|
|
(q[(oa + 12) >> 2] = a),
|
|
(q[(oa + 8) >> 2] = ia);
|
|
break B;
|
|
}
|
|
if (
|
|
((ia = 0),
|
|
(ka = a >>> 8) &&
|
|
((ia = 31),
|
|
16777215 < a >>> 0 ||
|
|
(ia =
|
|
(28 +
|
|
(((ia =
|
|
((((na =
|
|
(ka <<= la =
|
|
((ka + 1048320) >>> 16) &
|
|
8) <<
|
|
(ia =
|
|
((ka + 520192) >>> 16) &
|
|
4)) <<
|
|
(ka =
|
|
((na + 245760) >>> 16) &
|
|
2)) >>>
|
|
15) -
|
|
(ka | ia | la)) |
|
|
0) <<
|
|
1) |
|
|
((a >>> (ia + 21)) & 1))) |
|
|
0)),
|
|
(q[((ja = oa) + 28) >> 2] = ia),
|
|
(q[(oa + 16) >> 2] = 0),
|
|
(ja =
|
|
(8652 + (ia << 2)) |
|
|
(q[(oa + 20) >> 2] = 0)),
|
|
(ka = q[2088]) & (la = 1 << ia))
|
|
) {
|
|
for (
|
|
ka =
|
|
a <<
|
|
(31 == (0 | ia) ?
|
|
0 :
|
|
(25 - (ia >>> 1)) | 0),
|
|
ia = q[ja >> 2];;
|
|
|
|
) {
|
|
if (
|
|
(-8 & q[((ja = ia) + 4) >> 2]) ==
|
|
(0 | a)
|
|
)
|
|
break C;
|
|
if (
|
|
((ia = ka >>> 29),
|
|
(ka <<= 1), !(ia =
|
|
q[
|
|
(16 + (la = ((4 & ia) + ja) | 0)) >>
|
|
2
|
|
]))
|
|
)
|
|
break;
|
|
}
|
|
q[(la + 16) >> 2] = oa;
|
|
} else(q[2088] = ka | la),
|
|
(q[ja >> 2] = oa);
|
|
(q[(oa + 24) >> 2] = ja),
|
|
(q[(oa + 12) >> 2] = oa),
|
|
(q[(oa + 8) >> 2] = oa);
|
|
break B;
|
|
}
|
|
for (
|
|
q[2090] = oa =
|
|
((a = (ma + -40) | 0) -
|
|
(ka = (ia + 8) & 7 ? (-8 - ia) & 7 : 0)) |
|
|
0,
|
|
q[2093] = ka = (ia + ka) | 0,
|
|
q[(ka + 4) >> 2] = 1 | oa,
|
|
q[(4 + ((a + ia) | 0)) >> 2] = 40,
|
|
q[2094] = q[2209],
|
|
q[
|
|
((ka =
|
|
(a =
|
|
(((la +
|
|
((la + -39) & 7 ?
|
|
(39 - la) & 7 :
|
|
0)) |
|
|
0) -
|
|
47) |
|
|
0) >>>
|
|
0 <
|
|
(ja + 16) >>> 0 ?
|
|
ja :
|
|
a) +
|
|
4) >>
|
|
2
|
|
] = 27,
|
|
a = q[2202],
|
|
q[(ka + 16) >> 2] = q[2201],
|
|
q[(ka + 20) >> 2] = a,
|
|
a = q[2200],
|
|
q[(ka + 8) >> 2] = q[2199],
|
|
q[(ka + 12) >> 2] = a,
|
|
q[2201] = ka + 8,
|
|
q[2200] = ma,
|
|
q[2199] = ia,
|
|
a = (ka + 24) | (q[2202] = 0);
|
|
(q[(a + 4) >> 2] = 7),
|
|
(ia = (a + 8) | 0),
|
|
(a = (a + 4) | 0),
|
|
ia >>> 0 < la >>> 0;
|
|
|
|
);
|
|
if ((0 | ja) == (0 | ka)) break x;
|
|
if (
|
|
((q[(ka + 4) >> 2] = -2 & q[(ka + 4) >> 2]),
|
|
(q[(ja + 4) >> 2] = 1 | (la = (ka - ja) | 0)),
|
|
(q[ka >> 2] = la) >>> 0 <= 255)
|
|
) {
|
|
(a = (8388 + ((ia = la >>> 3) << 3)) | 0),
|
|
(ia =
|
|
(ka = q[2087]) & (ia = 1 << ia) ?
|
|
q[(a + 8) >> 2] :
|
|
((q[2087] = ia | ka), a)),
|
|
(q[(a + 8) >> 2] = ja),
|
|
(q[(ia + 12) >> 2] = ja),
|
|
(q[(ja + 12) >> 2] = a),
|
|
(q[(ja + 8) >> 2] = ia);
|
|
break x;
|
|
}
|
|
if (
|
|
((q[(ja + 16) >> 2] = 0),
|
|
(a = q[(ja + 20) >> 2] = 0),
|
|
(ka = la >>> 8) &&
|
|
((a = 31),
|
|
16777215 < la >>> 0 ||
|
|
(a =
|
|
(28 +
|
|
(((a =
|
|
((((oa =
|
|
(ka <<= ma =
|
|
((ka + 1048320) >>> 16) & 8) <<
|
|
(a =
|
|
((ka + 520192) >>> 16) & 4)) <<
|
|
(ka =
|
|
((oa + 245760) >>> 16) & 2)) >>>
|
|
15) -
|
|
(ka | a | ma)) |
|
|
0) <<
|
|
1) |
|
|
((la >>> (a + 21)) & 1))) |
|
|
0)),
|
|
(ia =
|
|
(8652 +
|
|
((q[((ia = ja) + 28) >> 2] = a) << 2)) |
|
|
0),
|
|
(ka = q[2088]) & (ma = 1 << a))
|
|
) {
|
|
for (
|
|
a =
|
|
la <<
|
|
(31 == (0 | a) ?
|
|
0 :
|
|
(25 - (a >>> 1)) | 0),
|
|
ia = q[ia >> 2];;
|
|
|
|
) {
|
|
if (
|
|
(0 | la) ==
|
|
(-8 & q[((ka = ia) + 4) >> 2])
|
|
)
|
|
break A;
|
|
if (
|
|
((ia = a >>> 29),
|
|
(a <<= 1), !(ia =
|
|
q[
|
|
(16 + (ma = (ka + (4 & ia)) | 0)) >> 2
|
|
]))
|
|
)
|
|
break;
|
|
}
|
|
(q[(ma + 16) >> 2] = ja),
|
|
(q[(ja + 24) >> 2] = ka);
|
|
} else
|
|
(q[2088] = ka | ma),
|
|
(q[ia >> 2] = ja),
|
|
(q[(ja + 24) >> 2] = ia);
|
|
(q[(ja + 12) >> 2] = ja),
|
|
(q[(ja + 8) >> 2] = ja);
|
|
break x;
|
|
}
|
|
(a = q[(ja + 8) >> 2]),
|
|
(q[(a + 12) >> 2] = oa),
|
|
(q[(ja + 8) >> 2] = oa),
|
|
(q[(oa + 24) >> 2] = 0),
|
|
(q[(oa + 12) >> 2] = ja),
|
|
(q[(oa + 8) >> 2] = a);
|
|
}
|
|
a = (qa + 8) | 0;
|
|
break a;
|
|
}
|
|
(a = q[(ka + 8) >> 2]),
|
|
(q[(a + 12) >> 2] = ja),
|
|
(q[(ka + 8) >> 2] = ja),
|
|
(q[(ja + 24) >> 2] = 0),
|
|
(q[(ja + 12) >> 2] = ka),
|
|
(q[(ja + 8) >> 2] = a);
|
|
}
|
|
if (!((a = q[2090]) >>> 0 <= na >>> 0)) {
|
|
(q[2090] = ia = (a - na) | 0),
|
|
(a = q[2093]),
|
|
(q[2093] = ja = (a + na) | 0),
|
|
(q[(ja + 4) >> 2] = 1 | ia),
|
|
(q[(a + 4) >> 2] = 3 | na),
|
|
(a = (a + 8) | 0);
|
|
break a;
|
|
}
|
|
}
|
|
(q[2086] = 48),
|
|
(a = 0);
|
|
break a;
|
|
}
|
|
Q: if (oa) {
|
|
a = q[(la + 28) >> 2];
|
|
R: {
|
|
if (q[(ka = (8652 + (a << 2)) | 0) >> 2] == (0 | la)) {
|
|
if ((q[ka >> 2] = ia)) break R;
|
|
(pa = dd(a) & pa), (q[2088] = pa);
|
|
break Q;
|
|
}
|
|
if (!(q[
|
|
(oa + (q[(oa + 16) >> 2] == (0 | la) ? 16 : 20)) >>
|
|
2
|
|
] = ia))
|
|
break Q;
|
|
}
|
|
(q[(ia + 24) >> 2] = oa),
|
|
(a = q[(la + 16) >> 2]) &&
|
|
((q[(ia + 16) >> 2] = a), (q[(a + 24) >> 2] = ia)),
|
|
(a = q[(la + 20) >> 2]) &&
|
|
((q[(ia + 20) >> 2] = a), (q[(a + 24) >> 2] = ia));
|
|
}
|
|
S: if (ja >>> 0 <= 15)
|
|
(q[(la + 4) >> 2] = 3 | (a = (ja + na) | 0)),
|
|
(q[(4 + (a = (a + la) | 0)) >> 2] =
|
|
1 | q[(a + 4) >> 2]);
|
|
elseif (
|
|
((q[(la + 4) >> 2] = 3 | na),
|
|
(q[(4 + (ka = (la + na) | 0)) >> 2] = 1 | ja),
|
|
(q[(ja + ka) >> 2] = ja) >>> 0 <= 255)
|
|
)
|
|
(a = (8388 + ((ia = ja >>> 3) << 3)) | 0),
|
|
(ia =
|
|
(ja = q[2087]) & (ia = 1 << ia) ?
|
|
q[(a + 8) >> 2] :
|
|
((q[2087] = ia | ja), a)),
|
|
(q[(a + 8) >> 2] = ka),
|
|
(q[(ia + 12) >> 2] = ka),
|
|
(q[(ka + 12) >> 2] = a),
|
|
(q[(ka + 8) >> 2] = ia);
|
|
else {
|
|
(a = 0),
|
|
(na = ja >>> 8) &&
|
|
((a = 31),
|
|
16777215 < ja >>> 0 ||
|
|
(a =
|
|
(28 +
|
|
(((a =
|
|
((((oa =
|
|
(na <<= ma = ((na + 1048320) >>> 16) & 8) <<
|
|
(a = ((na + 520192) >>> 16) & 4)) <<
|
|
(na = ((oa + 245760) >>> 16) & 2)) >>>
|
|
15) -
|
|
(na | a | ma)) |
|
|
0) <<
|
|
1) |
|
|
((ja >>> (a + 21)) & 1))) |
|
|
0)),
|
|
(q[((ia = ka) + 28) >> 2] = a),
|
|
(q[(ka + 16) >> 2] = 0),
|
|
(ia = (8652 + (a << 2)) | (q[(ka + 20) >> 2] = 0));
|
|
V: {
|
|
if ((na = 1 << a) & pa) {
|
|
for (
|
|
a =
|
|
ja << (31 == (0 | a) ? 0 : (25 - (a >>> 1)) | 0),
|
|
na = q[ia >> 2];;
|
|
|
|
) {
|
|
if ((-8 & q[((ia = na) + 4) >> 2]) == (0 | ja))
|
|
break V;
|
|
if (
|
|
((na = a >>> 29),
|
|
(a <<= 1), !(na = q[(16 + (ma = ((4 & na) + ia) | 0)) >> 2]))
|
|
)
|
|
break;
|
|
}
|
|
q[(ma + 16) >> 2] = ka;
|
|
} else(q[2088] = na | pa),
|
|
(q[ia >> 2] = ka);
|
|
(q[(ka + 24) >> 2] = ia),
|
|
(q[(ka + 12) >> 2] = ka),
|
|
(q[(ka + 8) >> 2] = ka);
|
|
break S;
|
|
}
|
|
(a = q[(ia + 8) >> 2]),
|
|
(q[(a + 12) >> 2] = ka),
|
|
(q[(ia + 8) >> 2] = ka),
|
|
(q[(ka + 24) >> 2] = 0),
|
|
(q[(ka + 12) >> 2] = ia),
|
|
(q[(ka + 8) >> 2] = a);
|
|
}
|
|
a = (la + 8) | 0;
|
|
break a;
|
|
}
|
|
X: if (qa) {
|
|
a = q[(ia + 28) >> 2];
|
|
Y: {
|
|
if (q[(ja = (8652 + (a << 2)) | 0) >> 2] == (0 | ia)) {
|
|
if ((q[ja >> 2] = la)) break Y;
|
|
(ua = dd(a) & ra), (q[2088] = ua);
|
|
break X;
|
|
}
|
|
if (!(q[
|
|
(qa + (q[(qa + 16) >> 2] == (0 | ia) ? 16 : 20)) >> 2
|
|
] = la))
|
|
break X;
|
|
}
|
|
(q[(la + 24) >> 2] = qa),
|
|
(a = q[(ia + 16) >> 2]) &&
|
|
((q[(la + 16) >> 2] = a), (q[(a + 24) >> 2] = la)),
|
|
(a = q[(ia + 20) >> 2]) &&
|
|
((q[(la + 20) >> 2] = a), (q[(a + 24) >> 2] = la));
|
|
}
|
|
ka >>> 0 <= 15 ?
|
|
((q[(ia + 4) >> 2] = 3 | (a = (ka + na) | 0)),
|
|
(q[(4 + (a = (a + ia) | 0)) >> 2] = 1 | q[(a + 4) >> 2])) :
|
|
((q[(ia + 4) >> 2] = 3 | na),
|
|
(q[(4 + (na = (ia + na) | 0)) >> 2] = 1 | ka),
|
|
(q[(ka + na) >> 2] = ka),
|
|
pa &&
|
|
((a = (8388 + ((ja = pa >>> 3) << 3)) | 0),
|
|
(la = q[2092]),
|
|
(ja =
|
|
(ja = 1 << ja) & ma ?
|
|
q[(a + 8) >> 2] :
|
|
((q[2087] = ja | ma), a)),
|
|
(q[(a + 8) >> 2] = la),
|
|
(q[(ja + 12) >> 2] = la),
|
|
(q[(la + 12) >> 2] = a),
|
|
(q[(la + 8) >> 2] = ja)),
|
|
(q[2092] = na),
|
|
(q[2089] = ka)),
|
|
(a = (ia + 8) | 0);
|
|
}
|
|
return (L = (16 + sa) | 0), a;
|
|
}
|
|
|
|
function ra(a, va, wa, xa, ya, za, Aa) {
|
|
var Qa,
|
|
Ta,
|
|
Ba,
|
|
Ca = 0,
|
|
Da = 0,
|
|
Fa = 0,
|
|
Ia = 0,
|
|
Ja = 0,
|
|
Ka = 0,
|
|
Ma = 0,
|
|
Na = 0,
|
|
Oa = 0,
|
|
Pa = 0,
|
|
Ra = 0,
|
|
Sa = 0;
|
|
(q[(76 + (L = Ba = (L - 80) | 0)) >> 2] = va),
|
|
(Ta = (55 + Ba) | 0),
|
|
(Qa = (56 + Ba) | 0),
|
|
(va = 0);
|
|
a: {
|
|
b: {
|
|
c: for (;;) {
|
|
(0 | Oa) < 0 ||
|
|
(Oa =
|
|
((2147483647 - Oa) | 0) < (0 | va) ?
|
|
((q[2086] = 61), -1) :
|
|
(va + Oa) | 0);
|
|
e: {
|
|
f: {
|
|
g: {
|
|
h: {
|
|
i: {
|
|
j: {
|
|
k: {
|
|
l: {
|
|
m: {
|
|
n: {
|
|
o: {
|
|
p: {
|
|
q: {
|
|
if (
|
|
((Ia = q[(76 + Ba) >> 2]),
|
|
(Fa = r[0 | (va = Ia)]))
|
|
) {
|
|
for (;;) {
|
|
r: {
|
|
s: {
|
|
t: if (
|
|
(Ca = 255 & Fa)
|
|
) {
|
|
if (37 != (0 | Ca))
|
|
break s;
|
|
for (Fa = va;;) {
|
|
if (
|
|
37 !=
|
|
r[(va + 1) | 0]
|
|
)
|
|
break t;
|
|
if (
|
|
((q[
|
|
(76 + Ba) >> 2
|
|
] = Ca =
|
|
(va + 2) | 0),
|
|
(Fa =
|
|
(Fa + 1) | 0),
|
|
(Da =
|
|
r[
|
|
(va + 2) | 0
|
|
]),
|
|
(va = Ca),
|
|
37 != (0 | Da))
|
|
)
|
|
break;
|
|
}
|
|
} else Fa = va;
|
|
if (
|
|
((va = (Fa - Ia) | 0),
|
|
a && Z(a, Ia, va),
|
|
va)
|
|
)
|
|
continue c;
|
|
(Pa = -1),
|
|
(Ja = !ha(
|
|
o[
|
|
(q[
|
|
(76 +
|
|
(Ca = Ba)) >>
|
|
2
|
|
] +
|
|
(Fa = 1)) |
|
|
0
|
|
]
|
|
)),
|
|
(va =
|
|
q[(76 + Ba) >> 2]),
|
|
Ja |
|
|
(36 !=
|
|
r[
|
|
(va + 2) | 0
|
|
]) ||
|
|
((Pa =
|
|
(o[(va + 1) | 0] +
|
|
-48) |
|
|
0),
|
|
(Ra = 1),
|
|
(Fa = 3)),
|
|
(q[(Ca + 76) >> 2] =
|
|
va =
|
|
(Fa + va) | 0);
|
|
u: if (
|
|
31 <
|
|
(Da =
|
|
((Ma =
|
|
o[
|
|
(Fa = 0) | va
|
|
]) +
|
|
-32) |
|
|
0) >>>
|
|
0
|
|
)
|
|
Ca = va;
|
|
elseif (
|
|
((Ca = va),
|
|
75913 &
|
|
(Da = 1 << Da))
|
|
)
|
|
for (;;) {
|
|
if (
|
|
((q[
|
|
(76 + Ba) >> 2
|
|
] = Ca =
|
|
(va + 1) | 0),
|
|
(Fa |= Da),
|
|
31 <
|
|
(Da =
|
|
((Ma =
|
|
o[
|
|
(va + 1) |
|
|
0
|
|
]) +
|
|
-32) |
|
|
0) >>>
|
|
0)
|
|
)
|
|
break u;
|
|
if (
|
|
((va = Ca), !(
|
|
75913 &
|
|
(Da = 1 << Da)
|
|
))
|
|
)
|
|
break;
|
|
}
|
|
if (42 == (0 | Ma)) {
|
|
if (
|
|
((Ja = Ba),
|
|
ha(
|
|
o[(Ca + 1) | 0]
|
|
) &&
|
|
((va =
|
|
q[
|
|
(76 + Ba) >> 2
|
|
]),
|
|
36 ==
|
|
r[
|
|
(va + 2) | 0
|
|
]))
|
|
)
|
|
(q[
|
|
((((o[
|
|
(va + 1) | 0
|
|
] <<
|
|
2) +
|
|
ya) |
|
|
0) -
|
|
192) >>
|
|
2
|
|
] = 10),
|
|
(Na =
|
|
q[
|
|
((((o[
|
|
(va + 1) | 0
|
|
] <<
|
|
3) +
|
|
xa) |
|
|
0) -
|
|
384) >>
|
|
2
|
|
]),
|
|
(Ra = 1),
|
|
(va =
|
|
(va + 3) | 0);
|
|
else {
|
|
if (Ra) break b;
|
|
(Na = Ra = 0),
|
|
a &&
|
|
((va =
|
|
q[wa >> 2]),
|
|
(q[wa >> 2] =
|
|
va + 4),
|
|
(Na =
|
|
q[va >> 2])),
|
|
(va =
|
|
(q[
|
|
(76 + Ba) >> 2
|
|
] +
|
|
1) |
|
|
0);
|
|
}
|
|
(q[(Ja + 76) >> 2] =
|
|
va), -1 < (0 | Na) ||
|
|
((Na =
|
|
(0 - Na) | 0),
|
|
(Fa |= 8192));
|
|
} else {
|
|
if (
|
|
(0 |
|
|
(Na = Ha(
|
|
(76 + Ba) | 0
|
|
))) <
|
|
0
|
|
)
|
|
break b;
|
|
va =
|
|
q[(76 + Ba) >> 2];
|
|
}
|
|
if (
|
|
((Da = -1),
|
|
46 == r[0 | va])
|
|
)
|
|
if (
|
|
42 ==
|
|
r[(va + 1) | 0]
|
|
)
|
|
if (
|
|
ha(
|
|
o[(va + 2) | 0]
|
|
) &&
|
|
((va =
|
|
q[
|
|
(76 + Ba) >> 2
|
|
]),
|
|
36 ==
|
|
r[(va + 3) | 0])
|
|
)
|
|
(q[
|
|
((((o[
|
|
(va + 2) | 0
|
|
] <<
|
|
2) +
|
|
ya) |
|
|
0) -
|
|
192) >>
|
|
2
|
|
] = 10),
|
|
(Da =
|
|
q[
|
|
((((o[
|
|
(va + 2) |
|
|
0
|
|
] <<
|
|
3) +
|
|
xa) |
|
|
0) -
|
|
384) >>
|
|
2
|
|
]),
|
|
(q[
|
|
(76 + Ba) >> 2
|
|
] = va =
|
|
(va + 4) | 0);
|
|
else {
|
|
if (Ra) break b;
|
|
(Da = a ?
|
|
((va =
|
|
q[wa >> 2]),
|
|
(q[wa >> 2] =
|
|
va + 4),
|
|
q[va >> 2]) :
|
|
0),
|
|
(va =
|
|
(q[
|
|
(76 + Ba) >>
|
|
2
|
|
] +
|
|
2) |
|
|
0),
|
|
(q[
|
|
(76 + Ba) >> 2
|
|
] = va);
|
|
}
|
|
else
|
|
(q[(76 + Ba) >> 2] =
|
|
va + 1),
|
|
(Da = Ha(
|
|
(76 + Ba) | 0
|
|
)),
|
|
(va =
|
|
q[
|
|
(76 + Ba) >> 2
|
|
]);
|
|
for (Ca = 0;;) {
|
|
if (
|
|
((Sa = Ca),
|
|
(Ka = -1),
|
|
57 <
|
|
(o[0 | va] +
|
|
-65) >>>
|
|
0)
|
|
)
|
|
break a;
|
|
if (
|
|
((q[
|
|
(76 + Ba) >> 2
|
|
] = Ma =
|
|
(va + 1) | 0),
|
|
(Ca = o[0 | va]),
|
|
(va = Ma), !(
|
|
((Ca =
|
|
r[
|
|
(3295 +
|
|
((Ca +
|
|
w(
|
|
Sa,
|
|
58
|
|
)) |
|
|
0)) |
|
|
0
|
|
]) +
|
|
-1) >>>
|
|
0 <
|
|
8
|
|
))
|
|
)
|
|
break;
|
|
}
|
|
if (!Ca) break a;
|
|
A: {
|
|
B: {
|
|
C: {
|
|
if (
|
|
19 ==
|
|
(0 | Ca)
|
|
) {
|
|
if (
|
|
(0 | Pa) <=
|
|
-1
|
|
)
|
|
break C;
|
|
break a;
|
|
}
|
|
if ((0 | Pa) < 0)
|
|
break B;
|
|
(q[
|
|
((Pa << 2) +
|
|
ya) >>
|
|
2
|
|
] = Ca),
|
|
(Ca =
|
|
q[
|
|
(4 +
|
|
(va =
|
|
((Pa <<
|
|
3) +
|
|
xa) |
|
|
0)) >>
|
|
2
|
|
]),
|
|
(q[
|
|
(64 + Ba) >> 2
|
|
] = q[va >> 2]),
|
|
(q[
|
|
(68 + Ba) >> 2
|
|
] = Ca);
|
|
}
|
|
if (((va = 0), a))
|
|
break A;
|
|
continue c;
|
|
}
|
|
if (!a) break e;
|
|
Ga(
|
|
(64 + Ba) | 0,
|
|
Ca,
|
|
wa,
|
|
Aa
|
|
),
|
|
(Ma =
|
|
q[
|
|
(76 + Ba) >> 2
|
|
]);
|
|
}
|
|
if (
|
|
((Ja = -65537 & Fa),
|
|
(Fa =
|
|
8192 & Fa ?
|
|
Ja :
|
|
Fa),
|
|
(Pa = 3336),
|
|
(Ca = Qa),
|
|
(va =
|
|
o[
|
|
(Ma + -1) |
|
|
(Ka = 0)
|
|
]),
|
|
(Ma =
|
|
((va =
|
|
Sa &&
|
|
3 == (15 & va) ?
|
|
-33 & va :
|
|
va) +
|
|
-88) |
|
|
0) >>>
|
|
0 <=
|
|
32)
|
|
)
|
|
break r;
|
|
D: {
|
|
E: {
|
|
F: {
|
|
G: {
|
|
if (
|
|
6 <
|
|
(Ja =
|
|
(va + -65) |
|
|
0) >>>
|
|
0
|
|
) {
|
|
if (
|
|
83 !=
|
|
(0 | va)
|
|
)
|
|
break f;
|
|
if (!Da)
|
|
break G;
|
|
Ca =
|
|
q[
|
|
(64 +
|
|
Ba) >>
|
|
2
|
|
];
|
|
break E;
|
|
}
|
|
switch (
|
|
(Ja - 1) |
|
|
0
|
|
) {
|
|
case 1:
|
|
break F;
|
|
case 0:
|
|
case 2:
|
|
break f;
|
|
default:
|
|
break q;
|
|
}
|
|
}
|
|
_(
|
|
a,
|
|
32,
|
|
Na,
|
|
(va = 0),
|
|
Fa
|
|
);
|
|
break D;
|
|
}
|
|
(q[
|
|
(12 + Ba) >> 2
|
|
] = 0),
|
|
(q[
|
|
(8 + Ba) >> 2
|
|
] =
|
|
q[
|
|
(64 + Ba) >> 2
|
|
]),
|
|
(q[
|
|
(64 + Ba) >> 2
|
|
] = 8 + Ba),
|
|
(Da = -1),
|
|
(Ca =
|
|
(8 + Ba) | 0);
|
|
}
|
|
va = 0;
|
|
H: {
|
|
for (;;) {
|
|
if (!(Ia =
|
|
q[Ca >> 2]))
|
|
break H;
|
|
if (
|
|
(Ja =
|
|
(0 |
|
|
(Ia = Ea(
|
|
(4 + Ba) |
|
|
0,
|
|
Ia
|
|
))) <
|
|
0) |
|
|
((Da - va) >>>
|
|
0 <
|
|
Ia >>> 0)
|
|
)
|
|
break;
|
|
if (
|
|
((Ca =
|
|
(Ca + 4) | 0), !(
|
|
(va =
|
|
(va + Ia) |
|
|
0) >>>
|
|
0 <
|
|
Da >>> 0
|
|
))
|
|
)
|
|
break H;
|
|
}
|
|
if (((Ka = -1), Ja))
|
|
break a;
|
|
}
|
|
if (
|
|
(_(
|
|
a,
|
|
32,
|
|
Na,
|
|
va,
|
|
Fa
|
|
),
|
|
va)
|
|
)
|
|
for (
|
|
Da = 0,
|
|
Ca =
|
|
q[
|
|
(64 + Ba) >>
|
|
2
|
|
];;
|
|
|
|
) {
|
|
if (!(Ia =
|
|
q[Ca >> 2]))
|
|
break D;
|
|
if (
|
|
(0 | va) <
|
|
(0 |
|
|
(Da =
|
|
((Ia = Ea(
|
|
(4 + Ba) |
|
|
0,
|
|
Ia
|
|
)) +
|
|
Da) |
|
|
0))
|
|
)
|
|
break D;
|
|
if (
|
|
(Z(
|
|
a,
|
|
(4 + Ba) | 0,
|
|
Ia
|
|
),
|
|
(Ca =
|
|
(Ca + 4) | 0), !(
|
|
Da >>> 0 <
|
|
va >>> 0
|
|
))
|
|
)
|
|
break;
|
|
}
|
|
else va = 0;
|
|
}
|
|
_(
|
|
a,
|
|
32,
|
|
Na,
|
|
va,
|
|
8192 ^ Fa
|
|
),
|
|
(va =
|
|
(0 | va) < (0 | Na) ?
|
|
Na :
|
|
va);
|
|
continue c;
|
|
}
|
|
(q[(76 + Ba) >> 2] = Ca =
|
|
(va + 1) | 0),
|
|
(Fa = r[(va + 1) | 0]),
|
|
(va = Ca);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
switch ((Ma - 1) | 0) {
|
|
case 28:
|
|
break i;
|
|
case 21:
|
|
break j;
|
|
case 23:
|
|
break l;
|
|
case 22:
|
|
break m;
|
|
case 11:
|
|
case 16:
|
|
break n;
|
|
case 10:
|
|
break o;
|
|
case 26:
|
|
break p;
|
|
case 8:
|
|
case 12:
|
|
case 13:
|
|
case 14:
|
|
break q;
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 9:
|
|
case 15:
|
|
case 17:
|
|
case 18:
|
|
case 19:
|
|
case 20:
|
|
case 24:
|
|
case 25:
|
|
case 27:
|
|
case 29:
|
|
case 30:
|
|
break f;
|
|
default:
|
|
break k;
|
|
}
|
|
}
|
|
if (((Ka = Oa), a)) break a;
|
|
if (!Ra) break e;
|
|
for (va = 1;;) {
|
|
if (
|
|
(a =
|
|
q[((va << 2) + ya) >> 2])
|
|
) {
|
|
if (
|
|
(Ga(
|
|
((va << 3) + xa) | 0,
|
|
a,
|
|
wa,
|
|
Aa
|
|
),
|
|
10 !=
|
|
(0 |
|
|
(va =
|
|
(va + (Ka = 1)) |
|
|
0)))
|
|
)
|
|
continue;
|
|
break a;
|
|
}
|
|
break;
|
|
}
|
|
if (((Ka = 1), 9 < va >>> 0))
|
|
break a;
|
|
if (
|
|
((Ka = -1),
|
|
q[((va << 2) + ya) >> 2])
|
|
)
|
|
break a;
|
|
for (; !q[
|
|
(((va = (va + 1) | 0) <<
|
|
2) +
|
|
ya) >>
|
|
2
|
|
] && 10 != (0 | va);
|
|
|
|
);
|
|
Ka = va >>> 0 < 10 ? -1 : 1;
|
|
break a;
|
|
}
|
|
va =
|
|
0 |
|
|
n[za](
|
|
a,
|
|
v[(64 + Ba) >> 3],
|
|
Na,
|
|
Da,
|
|
Fa,
|
|
va
|
|
);
|
|
continue;
|
|
}
|
|
(Ca =
|
|
(va = La(
|
|
(Ia =
|
|
(va = q[(64 + Ba) >> 2]) ||
|
|
3346),
|
|
Da
|
|
)) || (Da + Ia) | 0),
|
|
(Fa = Ja),
|
|
(Da = va ? (va - Ia) | 0 : Da);
|
|
break f;
|
|
}
|
|
(o[(55 + Ba) | 0] =
|
|
q[(64 + Ba) >> 2]),
|
|
(Da = 1),
|
|
(Ia = Ta),
|
|
(Fa = Ja);
|
|
break f;
|
|
}
|
|
if (
|
|
((va = Ja = q[(68 + Ba) >> 2]),
|
|
(Ia = q[(64 + Ba) >> 2]),
|
|
(0 | va) < -1 ||
|
|
((0 | va) <= -1 &&
|
|
!(4294967295 < Ia >>> 0)))
|
|
) {
|
|
(va =
|
|
(0 - ((va + (0 < Ia >>> 0)) | 0)) |
|
|
0),
|
|
(q[(64 + Ba) >> 2] = Ia =
|
|
(0 - Ia) | 0),
|
|
(q[(68 + Ba) >> 2] = va),
|
|
(Ka = 1),
|
|
(Pa = 3336);
|
|
break h;
|
|
}
|
|
if (2048 & Fa) {
|
|
(Ka = 1), (Pa = 3337);
|
|
break h;
|
|
}
|
|
Pa = (Ka = 1 & Fa) ? 3338 : 3336;
|
|
break h;
|
|
}
|
|
if (
|
|
((Ia = (function(a, Il, Rm) {
|
|
if (a | Il)
|
|
for (;
|
|
(o[0 | (Rm = (Rm + -1) | 0)] =
|
|
(7 & a) | 48),
|
|
(a =
|
|
((7 & Il) << 29) |
|
|
(a >>> 3)) | (Il >>>= 3);
|
|
|
|
);
|
|
return Rm;
|
|
})(
|
|
q[(64 + Ba) >> 2],
|
|
q[(68 + Ba) >> 2],
|
|
Qa
|
|
)), !(8 & Fa))
|
|
)
|
|
break g;
|
|
Da =
|
|
(0 | (va = (Qa - Ia) | 0)) < (0 | Da) ?
|
|
Da :
|
|
(va + 1) | 0;
|
|
break g;
|
|
}
|
|
(Da = 8 < Da >>> 0 ? Da : 8),
|
|
(Fa |= 8),
|
|
(va = 120);
|
|
}
|
|
if (
|
|
((Ia = (function(a, Il, Rm, Sm) {
|
|
if (a | Il)
|
|
for (;
|
|
(o[0 | (Rm = (Rm + -1) | 0)] =
|
|
r[(3824 + (15 & a)) | 0] | Sm),
|
|
(a =
|
|
((15 & Il) << 28) | (a >>> 4)) |
|
|
(Il >>>= 4);
|
|
|
|
);
|
|
return Rm;
|
|
})(
|
|
q[(64 + Ba) >> 2],
|
|
q[(68 + Ba) >> 2],
|
|
Qa,
|
|
32 & va
|
|
)), !(8 & Fa) |
|
|
!(q[(64 + Ba) >> 2] | q[(68 + Ba) >> 2]))
|
|
)
|
|
break g;
|
|
(Pa = (3336 + (va >>> 4)) | 0),
|
|
(Ka = 2);
|
|
break g;
|
|
}
|
|
if (7 < (Ca = 255 & Sa) >>> (va = 0)) continue;
|
|
switch ((Ca - 1) | 0) {
|
|
default:
|
|
case 0:
|
|
q[q[(64 + Ba) >> 2] >> 2] = Oa;
|
|
continue;
|
|
case 1:
|
|
(Ca = q[(64 + Ba) >> 2]),
|
|
(q[Ca >> 2] = Oa),
|
|
(q[(Ca + 4) >> 2] = Oa >> 31);
|
|
continue;
|
|
case 2:
|
|
p[q[(64 + Ba) >> 2] >> 1] = Oa;
|
|
continue;
|
|
case 3:
|
|
o[q[(64 + Ba) >> 2]] = Oa;
|
|
continue;
|
|
case 5:
|
|
q[q[(64 + Ba) >> 2] >> 2] = Oa;
|
|
continue;
|
|
case 4:
|
|
continue;
|
|
case 6:
|
|
}
|
|
(Ca = q[(64 + Ba) >> 2]),
|
|
(q[Ca >> 2] = Oa),
|
|
(q[(Ca + 4) >> 2] = Oa >> 31);
|
|
continue;
|
|
}
|
|
(Ia = q[(64 + Ba) >> 2]),
|
|
(va = q[(68 + Ba) >> 2]),
|
|
(Pa = 3336);
|
|
}
|
|
Ia = ga(Ia, va, Qa);
|
|
}
|
|
(Fa = -1 < (0 | Da) ? -65537 & Fa : Fa),
|
|
(Da = !!(
|
|
(Ja = va = q[(68 + Ba) >> 2]) |
|
|
(Ma = q[(64 + Ba) >> 2])
|
|
) | Da ?
|
|
(0 |
|
|
(va = (!(Ja | Ma) + ((Qa - Ia) | 0)) | 0)) <
|
|
(0 | Da) ?
|
|
Da :
|
|
va :
|
|
((Ia = Qa), 0));
|
|
}
|
|
_(
|
|
a,
|
|
32,
|
|
(va =
|
|
(0 | Na) <
|
|
(0 |
|
|
(Ca =
|
|
((Da =
|
|
(0 | Da) < (0 | (Ja = (Ca - Ia) | 0)) ?
|
|
Ja :
|
|
Da) +
|
|
Ka) |
|
|
0)) ?
|
|
Ca :
|
|
Na),
|
|
Ca,
|
|
Fa
|
|
),
|
|
Z(a, Pa, Ka),
|
|
_(a, 48, va, Ca, 65536 ^ Fa),
|
|
_(a, 48, Da, Ja, 0),
|
|
Z(a, Ia, Ja),
|
|
_(a, 32, va, Ca, 8192 ^ Fa);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
Ka = 0;
|
|
break a;
|
|
}
|
|
Ka = -1;
|
|
}
|
|
return (L = (80 + Ba) | 0), Ka;
|
|
}
|
|
|
|
function sa(a) {
|
|
var ya,
|
|
va = 0,
|
|
wa = 0,
|
|
xa = 0,
|
|
za = 0,
|
|
xa = 4,
|
|
wa = 1439;
|
|
a: if ((va = r[0 | a])) {
|
|
for (; !(
|
|
(0 | (ya = r[0 | wa])) != (0 | va) ||
|
|
!(xa = (xa + -1) | 0) | !ya
|
|
);
|
|
|
|
)
|
|
if (
|
|
((wa = (wa + 1) | 0),
|
|
(va = r[(a + 1) | 0]),
|
|
(a = (a + 1) | 0), !va)
|
|
)
|
|
break a;
|
|
za = va;
|
|
}
|
|
return ((255 & za) - r[0 | wa]) | 0;
|
|
}
|
|
|
|
function ta(a, Aa, Ea) {
|
|
var La,
|
|
Ga,
|
|
Ha = 0,
|
|
Ua = 0,
|
|
Va = 0;
|
|
(q[(L = Ga = (L - 240) | 0) >> 2] = a), (Ua = 1);
|
|
a: if (!((0 | Aa) < 2))
|
|
for (Ha = a;;) {
|
|
if (
|
|
((Ha =
|
|
((La = (Ha + -4) | 0) -
|
|
q[(((Va = (Aa + -2) | 0) << 2) + Ea) >> 2]) |
|
|
0),
|
|
0 <= (0 | n[5](a, Ha)) && -1 < (0 | n[5](a, La)))
|
|
)
|
|
break a;
|
|
if (
|
|
((a = ((Ua << 2) + Ga) | 0),
|
|
0 <= (0 | n[5](Ha, La)) ?
|
|
((q[a >> 2] = Ha), (Va = (Aa + -1) | 0)) :
|
|
(Ha = q[a >> 2] = La),
|
|
(Ua = (Ua + 1) | 0),
|
|
(0 | Va) < 2)
|
|
)
|
|
break a;
|
|
(a = q[Ga >> 2]), (Aa = Va);
|
|
}
|
|
Na(Ga, Ua), (L = (240 + Ga) | 0);
|
|
}
|
|
|
|
function ua(a) {
|
|
var Ea,
|
|
ab,
|
|
Aa = 0;
|
|
if (
|
|
(x(0),
|
|
(function(a) {
|
|
var Vg, Wg;
|
|
q[(a + 428) >> 2] &&
|
|
((Wg = q[(a + 332) >> 2]),
|
|
$(q[(a + 460) >> 2], q[(a + 436) >> 2], (Vg = Wg << 2)),
|
|
$(q[(a + 464) >> 2], q[(a + 440) >> 2], Vg),
|
|
$(q[(a + 468) >> 2], q[(a + 448) >> 2], Vg),
|
|
r[(q[a >> 2] + 4) | 0] < 4 ||
|
|
($(
|
|
q[(a + 472) >> 2],
|
|
q[(a + 452) >> 2],
|
|
(Vg = Wg << 4)
|
|
),
|
|
$(q[(a + 476) >> 2], q[(a + 456) >> 2], Vg)));
|
|
})(a),
|
|
(function(a) {
|
|
var ke,
|
|
le,
|
|
me,
|
|
fe = 0,
|
|
ge = x(0),
|
|
he = x(0),
|
|
ie = 0,
|
|
je = x(0);
|
|
x(0), x(0);
|
|
if (1 <= (0 | (ie = q[a >> 2])))
|
|
for (
|
|
me = ((fe = q[(a + 4) >> 2]) + w(ie, 52)) | 0,
|
|
a = q[(a + 12) >> 2];
|
|
(ge = u[a >> 2]),
|
|
u[(fe + 44) >> 2] !=
|
|
(ge = (ke = q[(fe + 16) >> 2]) ?
|
|
((he = ge),
|
|
(ge = u[(fe + 4) >> 2]),
|
|
(je = u[(fe + 12) >> 2]),
|
|
(he = x(x(he - ge) / je)),
|
|
(le = x(C(he))),
|
|
(ie =
|
|
x(y(le)) < x(2147483648) ? ~~le : -2147483648),
|
|
x(ge + x(je * x(he - x(0 | ie))))) :
|
|
((je = u[(fe + 4) >> 2]),
|
|
(he = u[(fe + 8) >> 2]),
|
|
ge < je ? je : he < ge ? he : ge)) ?
|
|
((u[(fe + 44) >> 2] = ge),
|
|
(q[(fe + 48) >> 2] = 1)) :
|
|
(q[(fe + 48) >> 2] = 0),
|
|
ke || (u[a >> 2] = ge),
|
|
(a = (a + 4) | 0),
|
|
(fe = (fe + 52) | 0) >>> 0 < me >>> 0;
|
|
|
|
);
|
|
})((a + 540) | 0),
|
|
(function(a) {
|
|
var Wd,
|
|
Xd,
|
|
ae,
|
|
ce,
|
|
de,
|
|
ee,
|
|
Rd = 0,
|
|
Sd = 0,
|
|
Td = x(0),
|
|
Ud = 0,
|
|
Vd = x(0),
|
|
Yd = (x(0), x(0), 0),
|
|
Zd = x(0),
|
|
_d = 0,
|
|
$d = 0,
|
|
be = 0;
|
|
x(0);
|
|
if (1 <= (0 | (Ud = q[(a + 540) >> 2])))
|
|
for (
|
|
de = ((Yd = q[(a + 544) >> 2]) + w(Ud, 52)) | 0,
|
|
ee = q[(a + 644) >> 2];;
|
|
|
|
) {
|
|
a: if (!(q[Yd >> 2] || (0 | (Ud = q[(Yd + 32) >> 2])) < 1))
|
|
if (
|
|
((ae = ((a = q[(Yd + 28) >> 2]) + w(Ud, 28)) | 0),
|
|
(ce = u[(Yd + 24) >> 2]),
|
|
(Xd = u[(Yd + 20) >> 2]),
|
|
(Wd = u[(Yd + 44) >> 2]),
|
|
ee)
|
|
)
|
|
for (;;) {
|
|
Zd = x(($d = 0));
|
|
h: {
|
|
i: {
|
|
j: {
|
|
if ((0 | (Sd = q[a >> 2])) < 1) Rd = Ud = 0;
|
|
else if (
|
|
((_d = q[(a + 4) >> 2]),
|
|
(Vd = u[_d >> 2]),
|
|
(Td = x(Vd - Xd)),
|
|
1 == (0 | Sd))
|
|
)
|
|
(Ud =
|
|
((Wd < x(Xd + Vd)) ^ 1) |
|
|
((Td < Wd) ^ 1)),
|
|
(Rd = 0);
|
|
else {
|
|
if (Wd < Td) {
|
|
(Ud = 1), (Rd = 0);
|
|
break i;
|
|
}
|
|
if (((Ud = 0), Wd < x(Xd + Vd))) Rd = 0;
|
|
else {
|
|
if (
|
|
((Rd = 1),
|
|
(Td = u[(_d + 4) >> 2]), !(Wd < x(Xd + Td)))
|
|
)
|
|
for (;;) {
|
|
if (
|
|
(0 | Sd) ==
|
|
(0 | (Rd = (Rd + 1) | 0))
|
|
)
|
|
break j;
|
|
if (
|
|
((Vd = Td),
|
|
(Td = u[(_d + (Rd << 2)) >> 2]),
|
|
Wd < x(Xd + Td))
|
|
)
|
|
break;
|
|
}
|
|
x(Td - Xd) < Wd ||
|
|
((Rd = (Rd + -1) | 0),
|
|
(Td = x(Td - Vd)) < ce) ||
|
|
(Zd = x(x(Wd - Vd) / Td));
|
|
}
|
|
}
|
|
if (Ud) break i;
|
|
if (((_d = Sd = 1), q[(a + 16) >> 2]))
|
|
break h;
|
|
break i;
|
|
}
|
|
(Rd = (Sd + -1) | 0),
|
|
(Ud = 1);
|
|
}
|
|
(_d =
|
|
((Sd = (Vd = u[(a + 12) >> 2]) != Zd) &
|
|
((Zd == x(0)) | (Vd == x(0)))) |
|
|
(q[(a + 8) >> 2] != (0 | Rd))),
|
|
($d = Ud);
|
|
}
|
|
if (
|
|
((q[(a + 20) >> 2] = _d),
|
|
(q[(a + 24) >> 2] = Sd),
|
|
(u[(a + 12) >> 2] = Zd),
|
|
(q[(a + 16) >> 2] = $d),
|
|
(q[(a + 8) >> 2] = Rd), !((a = (a + 28) | 0) >>> 0 < ae >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
else {
|
|
if (!q[(Yd + 48) >> 2])
|
|
for (;;)
|
|
if (
|
|
((q[(a + 20) >> 2] = 0), !(
|
|
(a = (a + 28) | (q[(a + 24) >> 2] = 0)) >>>
|
|
0 <
|
|
ae >>> 0
|
|
))
|
|
)
|
|
break a;
|
|
for (;;) {
|
|
Zd = x(($d = 0));
|
|
b: {
|
|
c: {
|
|
d: {
|
|
e: if (!(
|
|
((Sd = 0) | (Rd = q[(_d = a) >> 2])) <
|
|
1
|
|
)) {
|
|
if (
|
|
((Ud = q[(a + 4) >> 2]),
|
|
(Vd = u[Ud >> 2]),
|
|
(Td = x(Vd - Xd)),
|
|
1 != (0 | Rd))
|
|
) {
|
|
if (!(Wd < Td)) {
|
|
if (((Sd = 0), Wd < x(Xd + Vd)))
|
|
break e;
|
|
Sd = 1;
|
|
f: if (
|
|
((Td = u[(Ud + 4) >> 2]), !(Wd < x(Xd + Td)))
|
|
) {
|
|
for (
|
|
Rd = (Rd + -1) | 0;
|
|
(Vd = Td), (0 | Rd) != (0 | Sd);
|
|
|
|
)
|
|
if (
|
|
((Td =
|
|
u[
|
|
(Ud +
|
|
((Sd = (Sd + 1) | 0) <<
|
|
2)) >>
|
|
2
|
|
]),
|
|
Wd < x(Xd + Td))
|
|
)
|
|
break f;
|
|
Ud = 1;
|
|
break c;
|
|
}
|
|
if (((Ud = 0), x(Td - Xd) < Wd)) {
|
|
Rd = Sd;
|
|
break d;
|
|
}
|
|
if (
|
|
((Rd = (Sd + -1) | 0),
|
|
(Td = x(Td - Vd)) < ce)
|
|
)
|
|
break d;
|
|
Zd = x(x(Wd - Vd) / Td);
|
|
break d;
|
|
}
|
|
(Ud = 1), (Rd = 0);
|
|
break c;
|
|
}
|
|
Sd =
|
|
((Wd < x(Xd + Vd)) ^ 1) |
|
|
((Td < Wd) ^ 1);
|
|
}
|
|
(Ud = Sd),
|
|
(Rd = 0);
|
|
}
|
|
if (!Ud && ((be = Sd = 1), q[(a + 16) >> 2]))
|
|
break b;
|
|
}
|
|
($d = Ud),
|
|
(be =
|
|
((Sd = (Vd = u[(a + 12) >> 2]) != Zd) &
|
|
((Zd == x(0)) | (Vd == x(0)))) |
|
|
(q[(a + 8) >> 2] != (0 | Rd)));
|
|
}
|
|
if (
|
|
((q[(_d + 20) >> 2] = be),
|
|
(q[(a + 24) >> 2] = Sd),
|
|
(u[(a + 12) >> 2] = Zd),
|
|
(q[(a + 16) >> 2] = $d),
|
|
(q[(a + 8) >> 2] = Rd), !((a = (a + 28) | 0) >>> 0 < ae >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (!((Yd = (Yd + 52) | 0) >>> 0 < de >>> 0)) break;
|
|
}
|
|
})(a),
|
|
(function(a) {
|
|
var rd,
|
|
sd,
|
|
td,
|
|
ud,
|
|
vd,
|
|
kd = 0,
|
|
ld = x(0),
|
|
md = 0,
|
|
nd = 0,
|
|
od = x(0),
|
|
pd = 0,
|
|
qd = x(0);
|
|
x(0);
|
|
if (!(
|
|
r[(q[a >> 2] + 4) | 0] < 4 ||
|
|
(0 | (kd = q[(a + 540) >> 2])) < 1
|
|
))
|
|
for (
|
|
ud = ((pd = q[(a + 544) >> 2]) + w(kd, 52)) | 0,
|
|
vd = q[(a + 644) >> 2];;
|
|
|
|
) {
|
|
b: if (
|
|
1 == q[pd >> 2] &&
|
|
!((0 | (kd = q[(pd + 40) >> 2])) < 1)
|
|
)
|
|
if (
|
|
((sd = ((a = q[(pd + 36) >> 2]) + w(kd, 28)) | 0),
|
|
(rd = u[(pd + 44) >> 2]),
|
|
vd)
|
|
)
|
|
for (;;) {
|
|
qd = x((kd = 0));
|
|
d: if (!(
|
|
(0 | (nd = q[a >> 2])) < 2 ||
|
|
((md = q[(a + 4) >> 2]),
|
|
rd <= (ld = u[md >> 2]))
|
|
)) {
|
|
kd = 1;
|
|
e: if (!(rd < (od = u[(md + 4) >> 2]))) {
|
|
for (;
|
|
(ld = od),
|
|
(0 | nd) != (0 | (kd = (kd + 1) | 0));
|
|
|
|
)
|
|
if (rd < (od = u[(md + (kd << 2)) >> 2]))
|
|
break e;
|
|
kd = (nd + -1) | 0;
|
|
break d;
|
|
}
|
|
(qd = x(x(rd - ld) / x(od - ld))),
|
|
(kd = (kd + -1) | 0);
|
|
}
|
|
if (
|
|
((ld = u[(a + 16) >> 2]),
|
|
(u[(a + 16) >> 2] = qd),
|
|
(nd = q[(a + 12) >> 2]),
|
|
(q[(a + 12) >> 2] = kd),
|
|
(q[(a + 24) >> 2] = md = ld != qd),
|
|
(q[(a + 20) >> 2] =
|
|
(md & ((qd == x(0)) | (ld == x(0)))) |
|
|
((0 | kd) != (0 | nd))), !((a = (a + 28) | 0) >>> 0 < sd >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
else {
|
|
if (!q[(pd + 48) >> 2])
|
|
for (;;)
|
|
if (
|
|
((q[(a + 20) >> 2] = 0), !(
|
|
(a = (a + 28) | (q[(a + 24) >> 2] = 0)) >>>
|
|
0 <
|
|
sd >>> 0
|
|
))
|
|
)
|
|
break b;
|
|
for (;;) {
|
|
qd = x((nd = 0));
|
|
c: if (!(
|
|
(0 | (td = q[a >> 2])) < 2 ||
|
|
((md = q[(a + 4) >> 2]),
|
|
rd <= (ld = u[md >> 2]))
|
|
)) {
|
|
if (((kd = 1), !(rd < (od = u[(md + 4) >> 2]))))
|
|
for (nd = (td + -1) | 0;;) {
|
|
if (((ld = od), (0 | kd) == (0 | nd)))
|
|
break c;
|
|
if (
|
|
rd <
|
|
(od =
|
|
u[
|
|
(md + ((kd = (kd + 1) | 0) << 2)) >> 2
|
|
])
|
|
)
|
|
break;
|
|
}
|
|
(qd = x(x(rd - ld) / x(od - ld))),
|
|
(nd = (kd + -1) | 0);
|
|
}
|
|
if (
|
|
((ld = u[(a + 16) >> 2]),
|
|
(u[(a + 16) >> 2] = qd),
|
|
(kd = q[(a + 12) >> 2]),
|
|
(q[(a + 12) >> 2] = nd),
|
|
(q[(a + 24) >> 2] = md = ld != qd),
|
|
(q[(a + 20) >> 2] =
|
|
(md & ((qd == x(0)) | (ld == x(0)))) |
|
|
((0 | kd) != (0 | nd))), !((a = (a + 28) | 0) >>> 0 < sd >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (!((pd = (pd + 52) | 0) >>> 0 < ud >>> 0)) break;
|
|
}
|
|
})(a),
|
|
(function(a) {
|
|
var Id,
|
|
Jd,
|
|
Md,
|
|
Nd,
|
|
Od,
|
|
Pd,
|
|
Qd,
|
|
wd = 0,
|
|
xd = 0,
|
|
yd = 0,
|
|
zd = 0,
|
|
Ad = 0,
|
|
Bd = 0,
|
|
Cd = 0,
|
|
Dd = x(0),
|
|
Ed = 0,
|
|
Gd = 0,
|
|
Hd = 0,
|
|
Kd = 0,
|
|
Ld = 0;
|
|
if (1 <= (0 | (xd = q[(a + 564) >> 2])))
|
|
for (
|
|
Pd = ((Ad = q[(a + 568) >> 2]) + w(xd, 36)) | 0,
|
|
Nd = q[(a + 644) >> 2];;
|
|
|
|
) {
|
|
a: {
|
|
if (!(Bd =
|
|
((yd = zd = xd = 0) | (Jd = q[(Ad + 4) >> 2])) <
|
|
1))
|
|
for (Ed = q[Ad >> 2], a = Kd = 0;;) {
|
|
if (
|
|
((wd = q[(Ed + (a << 2)) >> 2]),
|
|
q[(wd + 16) >> 2])
|
|
) {
|
|
(wd = 1), (Ld = 0);
|
|
break a;
|
|
}
|
|
if (
|
|
((yd = yd || q[(wd + 24) >> 2]),
|
|
(xd = xd || q[(wd + 20) >> 2]),
|
|
(zd = ((u[(wd + 12) >> 2] != x(0)) + zd) | 0),
|
|
(0 | Jd) == (0 | (a = (a + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
if (
|
|
((wd = 0),
|
|
(Kd = Nd ? 1 : yd) | (Ld = Nd ? 1 : xd) &&
|
|
((q[(Ad + 12) >> 2] = Ed = 1 << zd),
|
|
31 != (0 | zd)))
|
|
) {
|
|
for (
|
|
xd = q[(Ad + 20) >> 2],
|
|
Od = q[Ad >> 2],
|
|
yd =
|
|
((a = q[(Ad + 16) >> 2]) + (Cd = Ed << 2)) |
|
|
0,
|
|
yd = ca(
|
|
a,
|
|
0,
|
|
(4 +
|
|
(((-1 ^ a) +
|
|
((a = (a + 4) | 0) >>> 0 < yd >>> 0 ?
|
|
yd :
|
|
a)) |
|
|
0)) &
|
|
-4
|
|
),
|
|
Cd = (xd + Cd) | 0,
|
|
a = xd;
|
|
(q[a >> 2] = 1065353216),
|
|
(a = (a + 4) | 0) >>> 0 < Cd >>> 0;
|
|
|
|
);
|
|
if (!Bd) {
|
|
if (((Bd = 0), (Cd = wd = 1), zd))
|
|
for (;;) {
|
|
if (
|
|
((zd = q[((Bd << 2) + Od) >> 2]),
|
|
(Gd = q[(zd + 8) >> 2]),
|
|
(Hd = w(Gd, wd)),
|
|
(Dd = u[(zd + 12) >> 2]) != x((a = 0)))
|
|
) {
|
|
for (
|
|
q[yd >> 2] = Hd + q[yd >> 2],
|
|
u[xd >> 2] = x(x(1) - Dd) * u[xd >> 2],
|
|
Gd = w((Gd + (a = 1)) | 0, wd);
|
|
(Dd = u[(zd + 12) >> 2]),
|
|
(Qd =
|
|
q[
|
|
(Md = ((Id = a << 2) + yd) | 0) >> 2
|
|
]),
|
|
(q[Md >> 2] =
|
|
Qd + ((Md = a & Cd) ? Gd : Hd)),
|
|
(u[(Id = (xd + Id) | 0) >> 2] =
|
|
(Md ? Dd : x(x(1) - Dd)) *
|
|
u[Id >> 2]),
|
|
(0 | Ed) != (0 | (a = (a + 1) | 0));
|
|
|
|
);
|
|
Cd <<= 1;
|
|
} else
|
|
for (;
|
|
(q[(Gd = (yd + (a << 2)) | 0) >> 2] =
|
|
Hd + q[Gd >> 2]),
|
|
(0 | Ed) != (0 | (a = (a + 1) | 0));
|
|
|
|
);
|
|
if (
|
|
((wd = w(q[zd >> 2], wd)),
|
|
(0 | Jd) == (0 | (Bd = (Bd + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
else
|
|
for (;;) {
|
|
if (
|
|
((zd = q[((Bd << 2) + Od) >> 2]),
|
|
(Cd = w(q[(zd + 8) >> 2], wd)),
|
|
(Dd = u[(zd + 12) >> 2]) != x((a = 0)))
|
|
)
|
|
(q[yd >> 2] = Cd + q[yd >> 2]),
|
|
(u[xd >> 2] = x(x(1) - Dd) * u[xd >> 2]);
|
|
else
|
|
for (;
|
|
(q[(Hd = (yd + (a << 2)) | 0) >> 2] =
|
|
Cd + q[Hd >> 2]),
|
|
(0 | Ed) != (0 | (a = (a + 1) | 0));
|
|
|
|
);
|
|
if (
|
|
((wd = w(q[zd >> 2], wd)),
|
|
(0 | Jd) == (0 | (Bd = (Bd + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
wd = 0;
|
|
}
|
|
}
|
|
}
|
|
if (
|
|
((q[(Ad + 32) >> 2] = wd),
|
|
(q[(Ad + 24) >> 2] = Ld),
|
|
(q[(Ad + 28) >> 2] = Kd), !((Ad = (Ad + 36) | 0) >>> 0 < Pd >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
})(a),
|
|
(function(a) {
|
|
var gd,
|
|
hd,
|
|
id,
|
|
jd,
|
|
Wc = x(0),
|
|
Xc = 0,
|
|
Yc = 0,
|
|
Zc = 0,
|
|
_c = 0,
|
|
$c = 0,
|
|
ad = x(0),
|
|
bd = x(0),
|
|
cd = x(0),
|
|
dd = 0,
|
|
ed = 0,
|
|
fd = 0;
|
|
if (!(
|
|
r[(q[a >> 2] + 4) | 0] < 4 ||
|
|
(0 | (Xc = q[(a + 588) >> 2])) < 1
|
|
))
|
|
for (
|
|
jd = ((Zc = q[(a + 592) >> 2]) + w(Xc, 48)) | 0,
|
|
gd = q[(a + 644) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((a = q[Zc >> 2]),
|
|
(ed = gd ? 1 : q[(a + 20) >> 2]) |
|
|
(fd = gd ? 1 : q[(a + 24) >> 2]))
|
|
) {
|
|
c: {
|
|
d: {
|
|
($c = Zc),
|
|
(_c = q[(a + 8) >> 2]),
|
|
(Xc = q[(a + 12) >> 2]),
|
|
(Wc = u[(a + 16) >> 2]),
|
|
(a = (0 | _c) != (0 | Xc));
|
|
e: {
|
|
if (Wc != x(0)) {
|
|
if (
|
|
((a = (Xc + 1) | 0), (0 | Xc) == (0 | _c))
|
|
) {
|
|
(q[(Zc + 8) >> 2] = ed = 1),
|
|
(Wc = x(x(1) - Wc)),
|
|
(fd = 1);
|
|
break e;
|
|
}
|
|
a = (0 | a) == (0 | _c) ? 1 : 2;
|
|
}
|
|
if (((q[($c + 8) >> 2] = a), !fd)) break d;
|
|
a = Xc;
|
|
}
|
|
(u[(Zc + 24) >> 2] = Wc),
|
|
(u[(Zc + 20) >> 2] = x(1) - Wc);
|
|
break c;
|
|
}
|
|
(fd = 0),
|
|
(a = Xc);
|
|
}
|
|
ed ?
|
|
((q[(Zc + 12) >> 2] = a),
|
|
(q[(Zc + 16) >> 2] = a + 1)) :
|
|
(ed = 0);
|
|
}
|
|
else ed = fd = 0;
|
|
g: if ((0 | (hd = q[(Zc + 36) >> 2])) < 1) cd = x(1);
|
|
else {
|
|
if (
|
|
((id = q[(Zc + 40) >> 2]),
|
|
(a = 0),
|
|
(cd = x(1)), !gd)
|
|
)
|
|
for (;;) {
|
|
h: {
|
|
i: {
|
|
if (
|
|
((Xc = q[((a << 2) + id) >> 2]),
|
|
(Yc = q[Xc >> 2]))
|
|
) {
|
|
if (!q[(Yc + 48) >> 2]) {
|
|
Wc = u[(Xc + 16) >> 2];
|
|
break h;
|
|
}
|
|
if ((0 | (_c = q[(Xc + 12) >> 2])) < 1) {
|
|
(Wc = x(1)), (u[(Xc + 16) >> 2] = 1);
|
|
break h;
|
|
}
|
|
if (
|
|
((dd = q[(Xc + 8) >> 2]),
|
|
1 != (0 | _c) &&
|
|
((ad = u[(Yc + 44) >> 2]),
|
|
($c = q[(Xc + 4) >> 2]), !(ad <= (bd = u[$c >> 2]))))
|
|
)
|
|
break i;
|
|
(Wc = u[dd >> 2]), (u[(Xc + 16) >> 2] = Wc);
|
|
break h;
|
|
}
|
|
(q[(Xc + 16) >> 2] = 1065353216),
|
|
(Wc = x(1));
|
|
break h;
|
|
}
|
|
Yc = 1;
|
|
j: if (!(ad < (Wc = u[($c + 4) >> 2]))) {
|
|
for (;
|
|
(bd = Wc),
|
|
(0 | _c) != (0 | (Yc = (Yc + 1) | 0));
|
|
|
|
)
|
|
if (ad < (Wc = u[($c + (Yc << 2)) >> 2]))
|
|
break j;
|
|
(Wc = u[(((dd + (_c << 2)) | 0) - 4) >> 2]),
|
|
(u[(Xc + 16) >> 2] = Wc);
|
|
break h;
|
|
}
|
|
($c = Xc),
|
|
(Wc = x(x(ad - bd) / x(Wc - bd))),
|
|
(Wc = x(
|
|
x(
|
|
Wc * u[(Xc = (dd + (Yc << 2)) | 0) >> 2]
|
|
) + x(u[(Xc + -4) >> 2] * x(x(1) - Wc))
|
|
)),
|
|
(u[($c + 16) >> 2] = Wc);
|
|
}
|
|
if (
|
|
((cd = cd < Wc ? cd : Wc),
|
|
(0 | hd) == (0 | (a = (a + 1) | 0)))
|
|
)
|
|
break g;
|
|
}
|
|
for (;;) {
|
|
(Xc = q[((a << 2) + id) >> 2]),
|
|
(Yc = q[Xc >> 2]),
|
|
(Wc = x(1));
|
|
l: if (
|
|
Yc &&
|
|
((dd = q[(Xc + 12) >> 2]),
|
|
(Wc = x(1)), !((0 | dd) < 1)) &&
|
|
((_c = q[(Xc + 8) >> 2]),
|
|
(Wc = u[_c >> 2]),
|
|
1 != (0 | dd))
|
|
) {
|
|
m: {
|
|
if (
|
|
((ad = u[(Yc + 44) >> 2]),
|
|
($c = q[(Xc + 4) >> 2]),
|
|
ad <= (bd = u[$c >> 2]))
|
|
) {
|
|
Wc = u[_c >> 2];
|
|
break l;
|
|
}
|
|
if (
|
|
((Yc = 1), !(ad < (Wc = u[($c + 4) >> 2])))
|
|
) {
|
|
for (;
|
|
(bd = Wc),
|
|
(0 | dd) != (0 | (Yc = (Yc + 1) | 0));
|
|
|
|
)
|
|
if (ad < (Wc = u[($c + (Yc << 2)) >> 2]))
|
|
break m;
|
|
Wc = u[(((_c + (dd << 2)) | 0) - 4) >> 2];
|
|
break l;
|
|
}
|
|
}
|
|
(Wc = x(x(ad - bd) / x(Wc - bd))),
|
|
(Wc = x(
|
|
x(Wc * u[(Yc = (_c + (Yc << 2)) | 0) >> 2]) +
|
|
x(u[(Yc + -4) >> 2] * x(x(1) - Wc))
|
|
));
|
|
}
|
|
if (
|
|
((cd = cd < (u[(Xc + 16) >> 2] = Wc) ? cd : Wc),
|
|
(0 | hd) == (0 | (a = (a + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (
|
|
((q[(Zc + 32) >> 2] = fd),
|
|
(q[(Zc + 28) >> 2] = ed),
|
|
(u[(Zc + 44) >> 2] = cd), !((Zc = (Zc + 48) | 0) >>> 0 < jd >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
})(a),
|
|
1 <= (0 | (Ea = q[(a + 4) >> 2])))
|
|
)
|
|
for (
|
|
Ea = ((Aa = q[(a + 52) >> 2]) + (Ea << 2)) | 0;
|
|
(ab = u[Aa >> 2]),
|
|
(u[Aa >> 2] = ab < x(0) ? x(0) : x(A(ab, x(1)))),
|
|
(Aa = (Aa + 4) | 0) >>> 0 < Ea >>> 0;
|
|
|
|
);
|
|
!(function(a) {
|
|
var Fe,
|
|
Ge,
|
|
He,
|
|
De = 0,
|
|
Ee = 0;
|
|
if (1 <= (0 | (Ee = q[(a + 4) >> 2])))
|
|
for (
|
|
He = ((De = q[(a + 8) >> 2]) + w(Ee, 12)) | 0,
|
|
a = Fe = q[(a + 40) >> 2];
|
|
(Ee = 0),
|
|
q[(De + 8) >> 2] &&
|
|
((Ge = q[(De + 4) >> 2]),
|
|
(!q[((Ge << 2) + Fe) >> 2] && -1 != (0 | Ge)) ||
|
|
(Ee = !q[(q[De >> 2] + 32) >> 2])),
|
|
(q[a >> 2] = Ee),
|
|
(a = (a + 4) | 0),
|
|
(De = (De + 12) | 0) >>> 0 < He >>> 0;
|
|
|
|
);
|
|
})(a),
|
|
(function(a) {
|
|
var rg,
|
|
vg,
|
|
wg,
|
|
xg,
|
|
yg,
|
|
zg,
|
|
Ag,
|
|
pg = 0,
|
|
qg = 0,
|
|
sg = 0,
|
|
tg = 0,
|
|
ug = 0;
|
|
if (1 <= (0 | (vg = q[(a + 4) >> 2])))
|
|
for (
|
|
xg = q[(a + 8) >> 2],
|
|
wg = q[a >> 2],
|
|
yg = q[(wg + 724) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((rg = q[(w(tg, 12) + xg) >> 2]),
|
|
(q[(rg + 28) >> 2] || q[(rg + 24) >> 2]) &&
|
|
((q[((pg = tg << 2) + q[(a + 28) >> 2]) >> 2] =
|
|
q[(rg + 12) >> 2]),
|
|
q[(rg + 24) >> 2]) &&
|
|
!((0 | (sg = q[(rg + 12) >> 2])) < 1))
|
|
)
|
|
for (
|
|
sg = ((qg = q[(rg + 16) >> 2]) + (sg << 2)) | 0,
|
|
zg = q[(pg + yg) >> 2],
|
|
pg = (q[(a + 36) >> 2] + (ug << 2)) | 0,
|
|
Ag = q[(wg + 976) >> 2];
|
|
(q[pg >> 2] =
|
|
q[(((q[qg >> 2] + zg) << 2) + Ag) >> 2]),
|
|
(pg = (pg + 4) | 0),
|
|
(qg = (qg + 4) | 0) >>> 0 < sg >>> 0;
|
|
|
|
);
|
|
if (
|
|
q[(rg + 28) >> 2] &&
|
|
!((0 | (pg = q[(rg + 12) >> 2])) < 1)
|
|
)
|
|
for (
|
|
sg = ((qg = q[(rg + 20) >> 2]) + (pg << 2)) | 0,
|
|
pg = (q[(a + 32) >> 2] + (ug << 2)) | 0;
|
|
(q[pg >> 2] = q[qg >> 2]),
|
|
(pg = (pg + 4) | 0),
|
|
(qg = (qg + 4) | 0) >>> 0 < sg >>> 0;
|
|
|
|
);
|
|
if (
|
|
((ug = (q[(rg + 8) >> 2] + ug) | 0),
|
|
(0 | vg) == (0 | (tg = (tg + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
})(a),
|
|
n[q[1808]](
|
|
(a + 12) | 0,
|
|
q[(a + 36) >> 2],
|
|
q[(a + 44) >> 2],
|
|
q[(a + 40) >> 2]
|
|
),
|
|
(function(a) {
|
|
var xe,
|
|
ye,
|
|
ze,
|
|
Ae,
|
|
Be,
|
|
Ce,
|
|
ue = 0,
|
|
ve = 0,
|
|
we = 0;
|
|
if (1 <= (0 | (we = q[(a + 304) >> 2])))
|
|
for (
|
|
ze = ((ue = q[(a + 308) >> 2]) + (we << 5)) | 0,
|
|
Ae = q[(a + 264) >> 2],
|
|
Be = q[(a + 144) >> 2],
|
|
Ce = q[(a + 40) >> 2],
|
|
we = ye = q[(a + 312) >> 2];
|
|
(xe = we),
|
|
(ve = 0),
|
|
(a = ve = !q[(ue + 28) >> 2] ||
|
|
(-1 != (0 | (a = q[(ue + 4) >> 2])) &&
|
|
((ve = 0), !q[((a << 2) + Ce) >> 2])) ||
|
|
(-1 != (0 | (a = q[(ue + 8) >> 2])) &&
|
|
((ve = 0), !q[((a << 2) + ye) >> 2])) ?
|
|
ve :
|
|
!q[(q[ue >> 2] + 32) >> 2]),
|
|
(q[xe >> 2] = a),
|
|
(xe = q[(ue + 12) >> 2]) >>> 0 <= 1 ?
|
|
xe - 1 ?
|
|
(q[((q[(ue + 16) >> 2] << 2) + Be) >> 2] = a) :
|
|
(q[((q[(ue + 16) >> 2] << 2) + Ae) >> 2] = a) :
|
|
Y(4, 1372, 0),
|
|
(we = (we + 4) | 0),
|
|
(ue = (ue + 32) | 0) >>> 0 < ze >>> 0;
|
|
|
|
);
|
|
})(a),
|
|
(function(a) {
|
|
var gg,
|
|
hg,
|
|
ig,
|
|
jg,
|
|
kg,
|
|
lg,
|
|
mg,
|
|
ng,
|
|
og,
|
|
Uf = 0,
|
|
Vf = 0,
|
|
Wf = 0,
|
|
Xf = 0,
|
|
Yf = 0,
|
|
Zf = 0,
|
|
_f = 0,
|
|
$f = 0,
|
|
ag = 0,
|
|
bg = 0,
|
|
cg = 0,
|
|
dg = 0,
|
|
eg = 0,
|
|
fg = 0,
|
|
Yf = q[a >> 2];
|
|
if (1 <= (0 | ($f = q[(a + 56) >> 2]))) {
|
|
for (
|
|
ag = q[(a + 60) >> 2],
|
|
bg = q[(Yf + 1052) >> 2],
|
|
cg = q[(Yf + 784) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((Uf = q[(ag + w(Zf, 24)) >> 2]),
|
|
(q[(Uf + 28) >> 2] || q[(Uf + 24) >> 2]) &&
|
|
((q[((Vf = Zf << 2) + q[(a + 80) >> 2]) >> 2] =
|
|
q[(Uf + 12) >> 2]),
|
|
q[(Uf + 24) >> 2]) &&
|
|
!((0 | (Xf = q[(Uf + 12) >> 2])) < 1))
|
|
)
|
|
for (
|
|
dg = ((Wf = q[(Uf + 16) >> 2]) + (Xf << 2)) | 0,
|
|
eg = q[(Vf + cg) >> 2],
|
|
Vf = ((Xf = _f << 2) + q[(a + 92) >> 2]) | 0,
|
|
Xf = (Xf + q[(a + 88) >> 2]) | 0;
|
|
(fg = (eg + q[Wf >> 2]) << 2),
|
|
(q[Vf >> 2] =
|
|
bg + (q[(fg + q[(Yf + 984) >> 2]) >> 2] << 2)),
|
|
(q[Xf >> 2] = q[(fg + q[(Yf + 980) >> 2]) >> 2]),
|
|
(Xf = (Xf + 4) | 0),
|
|
(Vf = (Vf + 4) | 0),
|
|
(Wf = (Wf + 4) | 0) >>> 0 < dg >>> 0;
|
|
|
|
);
|
|
if (
|
|
q[(Uf + 28) >> 2] &&
|
|
!((0 | (Vf = q[(Uf + 12) >> 2])) < 1)
|
|
)
|
|
for (
|
|
Xf = ((Wf = q[(Uf + 20) >> 2]) + (Vf << 2)) | 0,
|
|
Vf = (q[(a + 84) >> 2] + (_f << 2)) | 0;
|
|
(q[Vf >> 2] = q[Wf >> 2]),
|
|
(Vf = (Vf + 4) | 0),
|
|
(Wf = (Wf + 4) | 0) >>> 0 < Xf >>> 0;
|
|
|
|
);
|
|
if (
|
|
((_f = (q[(Uf + 8) >> 2] + _f) | 0),
|
|
(0 | $f) == (0 | (Zf = (Zf + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
Yf = q[a >> 2];
|
|
}
|
|
if (!(
|
|
r[(Yf + 4) | 0] < 4 || (0 | (eg = q[(a + 56) >> 2])) < 1
|
|
))
|
|
for (
|
|
fg = q[(Yf + 792) >> 2],
|
|
gg = q[(a + 60) >> 2],
|
|
Wf = _f = 0;;
|
|
|
|
) {
|
|
if (
|
|
((Zf = q[(w(Wf, 24) + gg) >> 2]),
|
|
q[(Zf + 24) >> 2] &&
|
|
!((0 | (Uf = q[(Zf + 12) >> 2])) < 1))
|
|
)
|
|
for (
|
|
hg = ((Vf = q[(Zf + 16) >> 2]) + (Uf << 2)) | 0,
|
|
ig = q[(fg + (Wf << 2)) >> 2],
|
|
Xf = ((Uf = _f << 2) + q[(a + 96) >> 2]) | 0,
|
|
$f = (Uf + q[(a + 100) >> 2]) | 0,
|
|
ag = (Uf + q[(a + 104) >> 2]) | 0,
|
|
bg = (Uf + q[(a + 108) >> 2]) | 0,
|
|
cg = (Uf + q[(a + 112) >> 2]) | 0,
|
|
dg = (Uf + q[(a + 116) >> 2]) | 0,
|
|
jg = q[(Yf + 1308) >> 2],
|
|
kg = q[(Yf + 1304) >> 2],
|
|
lg = q[(Yf + 1300) >> 2],
|
|
mg = q[(Yf + 1296) >> 2],
|
|
ng = q[(Yf + 1292) >> 2],
|
|
og = q[(Yf + 1288) >> 2];
|
|
(Uf = (q[Vf >> 2] + ig) << 2),
|
|
(q[Xf >> 2] = q[(Uf + og) >> 2]),
|
|
(q[$f >> 2] = q[(Uf + ng) >> 2]),
|
|
(q[ag >> 2] = q[(Uf + mg) >> 2]),
|
|
(q[bg >> 2] = q[(Uf + lg) >> 2]),
|
|
(q[cg >> 2] = q[(Uf + kg) >> 2]),
|
|
(q[dg >> 2] = q[(Uf + jg) >> 2]),
|
|
(dg = (dg + 4) | 0),
|
|
(cg = (cg + 4) | 0),
|
|
(bg = (bg + 4) | 0),
|
|
(ag = (ag + 4) | 0),
|
|
($f = ($f + 4) | 0),
|
|
(Xf = (Xf + 4) | 0),
|
|
(Vf = (Vf + 4) | 0) >>> 0 < hg >>> 0;
|
|
|
|
);
|
|
if (
|
|
((_f = (q[(Zf + 8) >> 2] + _f) | 0),
|
|
(0 | eg) == (0 | (Wf = (Wf + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
})(a),
|
|
(function(a) {
|
|
var xf = 0,
|
|
yf = 0,
|
|
Af = 0,
|
|
Bf = 0,
|
|
Cf = 0,
|
|
Df = 0,
|
|
Ef = 0,
|
|
Ff = 0,
|
|
Gf = 0,
|
|
Hf = 0,
|
|
If = 0,
|
|
Jf = 0,
|
|
Kf = 0,
|
|
Lf = 0,
|
|
Mf = 0,
|
|
Nf = 0,
|
|
Of = 0,
|
|
Pf = 0,
|
|
Qf = 0,
|
|
Rf = 0,
|
|
Sf = 0,
|
|
Tf = q[(a + 168) >> 2],
|
|
zf = q[a >> 2];
|
|
if (1 <= (0 | (Kf = q[(a + 164) >> 2])))
|
|
for (Mf = q[(zf + 816) >> 2];;) {
|
|
if (
|
|
((Af = q[(w(Ef, 12) + Tf) >> 2]),
|
|
(q[(Af + 28) >> 2] || q[(Af + 24) >> 2]) &&
|
|
((q[((Ff = Ef << 2) + q[(a + 188) >> 2]) >> 2] =
|
|
q[(Af + 12) >> 2]),
|
|
q[(Af + 24) >> 2]))
|
|
) {
|
|
if (
|
|
((yf = q[(Af + 16) >> 2]),
|
|
(Lf = q[(Ff + Mf) >> 2]),
|
|
1 <= (0 | (xf = q[(Af + 12) >> 2])))
|
|
)
|
|
for (
|
|
Nf = (yf + (xf << 2)) | 0,
|
|
Bf = ((xf = Df << 2) + q[(a + 200) >> 2]) | 0,
|
|
Gf = (xf + q[(a + 204) >> 2]) | 0,
|
|
Hf = (xf + q[(a + 208) >> 2]) | 0,
|
|
If = (xf + q[(a + 212) >> 2]) | 0,
|
|
Jf = (xf + q[(a + 196) >> 2]) | 0,
|
|
Of = q[(zf + 996) >> 2],
|
|
Pf = q[(zf + 1012) >> 2],
|
|
Qf = q[(zf + 1008) >> 2],
|
|
Rf = q[(zf + 1004) >> 2],
|
|
Sf = q[(zf + 1e3) >> 2],
|
|
xf = yf;
|
|
(Cf = (Lf + q[xf >> 2]) << 2),
|
|
(q[Bf >> 2] = q[(Cf + Sf) >> 2]),
|
|
(q[Gf >> 2] = q[(Cf + Rf) >> 2]),
|
|
(q[Hf >> 2] = q[(Cf + Qf) >> 2]),
|
|
(q[If >> 2] = q[(Cf + Pf) >> 2]),
|
|
(q[Jf >> 2] = q[(Cf + Of) >> 2]),
|
|
(Jf = (Jf + 4) | 0),
|
|
(If = (If + 4) | 0),
|
|
(Hf = (Hf + 4) | 0),
|
|
(Gf = (Gf + 4) | 0),
|
|
(Bf = (Bf + 4) | 0),
|
|
(xf = (xf + 4) | 0) >>> 0 < Nf >>> 0;
|
|
|
|
);
|
|
(xf = (Lf + q[yf >> 2]) << 2),
|
|
(q[(Ff + q[(a + 288) >> 2]) >> 2] =
|
|
q[(xf + q[(zf + 1016) >> 2]) >> 2]),
|
|
(q[(Ff + q[(a + 292) >> 2]) >> 2] =
|
|
q[(xf + q[(zf + 1020) >> 2]) >> 2]);
|
|
}
|
|
if (
|
|
q[(Af + 28) >> 2] &&
|
|
!((0 | (yf = q[(Af + 12) >> 2])) < 1)
|
|
)
|
|
for (
|
|
yf = ((xf = q[(Af + 20) >> 2]) + (yf << 2)) | 0,
|
|
Bf = (q[(a + 192) >> 2] + (Df << 2)) | 0;
|
|
(q[Bf >> 2] = q[xf >> 2]),
|
|
(Bf = (Bf + 4) | 0),
|
|
(xf = (xf + 4) | 0) >>> 0 < yf >>> 0;
|
|
|
|
);
|
|
if (
|
|
((Df = (q[(Af + 8) >> 2] + Df) | 0),
|
|
(0 | Kf) == (0 | (Ef = (Ef + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
if (!(
|
|
r[(zf + 4) | 0] < 4 ||
|
|
(0 | (Ff = q[(a + 164) >> 2])) < 1
|
|
))
|
|
for (Lf = q[(zf + 824) >> 2], Df = Af = 0;;) {
|
|
if (
|
|
((Cf = q[(w(Df, 12) + Tf) >> 2]),
|
|
q[(Cf + 24) >> 2] &&
|
|
!((0 | (xf = q[(Cf + 12) >> 2])) < 1))
|
|
)
|
|
for (
|
|
Kf = ((Bf = q[(Cf + 16) >> 2]) + (xf << 2)) | 0,
|
|
Mf = q[(Lf + (Df << 2)) >> 2],
|
|
Gf = ((yf = Af << 2) + q[(a + 216) >> 2]) | 0,
|
|
Hf = (yf + q[(a + 220) >> 2]) | 0,
|
|
If = (yf + q[(a + 224) >> 2]) | 0,
|
|
Jf = (yf + q[(a + 228) >> 2]) | 0,
|
|
xf = (yf + q[(a + 232) >> 2]) | 0,
|
|
Ef = (yf + q[(a + 236) >> 2]) | 0,
|
|
Nf = q[(zf + 1308) >> 2],
|
|
Of = q[(zf + 1304) >> 2],
|
|
Pf = q[(zf + 1300) >> 2],
|
|
Qf = q[(zf + 1296) >> 2],
|
|
Rf = q[(zf + 1292) >> 2],
|
|
Sf = q[(zf + 1288) >> 2];
|
|
(yf = (Mf + q[Bf >> 2]) << 2),
|
|
(q[Gf >> 2] = q[(yf + Sf) >> 2]),
|
|
(q[Hf >> 2] = q[(yf + Rf) >> 2]),
|
|
(q[If >> 2] = q[(yf + Qf) >> 2]),
|
|
(q[Jf >> 2] = q[(yf + Pf) >> 2]),
|
|
(q[xf >> 2] = q[(yf + Of) >> 2]),
|
|
(q[Ef >> 2] = q[(yf + Nf) >> 2]),
|
|
(Ef = (Ef + 4) | 0),
|
|
(xf = (xf + 4) | 0),
|
|
(Jf = (Jf + 4) | 0),
|
|
(If = (If + 4) | 0),
|
|
(Hf = (Hf + 4) | 0),
|
|
(Gf = (Gf + 4) | 0),
|
|
(Bf = (Bf + 4) | 0) >>> 0 < Kf >>> 0;
|
|
|
|
);
|
|
if (
|
|
((Af = (q[(Cf + 8) >> 2] + Af) | 0),
|
|
(0 | Ff) == (0 | (Df = (Df + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
})(a),
|
|
(function(a) {
|
|
var yk,
|
|
qk = 0,
|
|
rk = 0,
|
|
sk = 0,
|
|
tk = 0,
|
|
uk = 0,
|
|
vk = 0,
|
|
wk = 0,
|
|
xk = 0,
|
|
qk = (a - -64) | 0;
|
|
if (
|
|
(n[q[1807]](
|
|
qk,
|
|
q[(a + 88) >> 2],
|
|
q[(a + 148) >> 2],
|
|
q[(a + 144) >> 2]
|
|
),
|
|
n[q[1809]](
|
|
qk,
|
|
q[(a + 92) >> 2],
|
|
q[(a + 152) >> 2],
|
|
q[(q[a >> 2] + 796) >> 2],
|
|
2,
|
|
q[(a + 144) >> 2]
|
|
), !(
|
|
r[(q[a >> 2] + 4) | 0] < 4 ||
|
|
(n[q[1807]](
|
|
qk,
|
|
q[(a + 96) >> 2],
|
|
q[(a + 120) >> 2],
|
|
q[(a + 144) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
qk,
|
|
q[(a + 100) >> 2],
|
|
q[(a + 124) >> 2],
|
|
q[(a + 144) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
qk,
|
|
q[(a + 104) >> 2],
|
|
q[(a + 128) >> 2],
|
|
q[(a + 144) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
qk,
|
|
q[(a + 108) >> 2],
|
|
q[(a + 132) >> 2],
|
|
q[(a + 144) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
qk,
|
|
q[(a + 112) >> 2],
|
|
q[(a + 136) >> 2],
|
|
q[(a + 144) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
qk,
|
|
q[(a + 116) >> 2],
|
|
q[(a + 140) >> 2],
|
|
q[(a + 144) >> 2]
|
|
),
|
|
(0 | (vk = q[(a + 56) >> 2])) < 1)
|
|
))
|
|
) {
|
|
for (
|
|
wk = q[(a + 128) >> 2],
|
|
xk = q[(a + 124) >> 2],
|
|
yk = q[(a + 120) >> 2],
|
|
rk = q[(a + 156) >> 2],
|
|
qk = 0;
|
|
(q[((sk = tk << 2) + rk) >> 2] =
|
|
q[((uk = qk << 2) + yk) >> 2]),
|
|
(q[(rk + (4 | sk)) >> 2] = q[(uk + xk) >> 2]),
|
|
(q[(rk + (8 | sk)) >> 2] = q[(uk + wk) >> 2]),
|
|
(tk = (tk + 4) | 0),
|
|
(0 | vk) != (0 | (qk = (qk + 1) | 0));
|
|
|
|
);
|
|
for (
|
|
rk = q[(a + 160) >> 2],
|
|
uk = q[(a + 140) >> 2],
|
|
wk = q[(a + 136) >> 2],
|
|
xk = q[(a + 132) >> 2],
|
|
qk = a = 0;
|
|
(q[((tk = a << 2) + rk) >> 2] =
|
|
q[((sk = qk << 2) + xk) >> 2]),
|
|
(q[(rk + (4 | tk)) >> 2] = q[(sk + wk) >> 2]),
|
|
(q[(rk + (8 | tk)) >> 2] = q[(sk + uk) >> 2]),
|
|
(a = (a + 4) | 0),
|
|
(0 | vk) != (0 | (qk = (qk + 1) | 0));
|
|
|
|
);
|
|
}
|
|
})(a),
|
|
(function(a) {
|
|
var pk,
|
|
hk = 0,
|
|
ik = 0,
|
|
jk = 0,
|
|
kk = 0,
|
|
lk = 0,
|
|
mk = 0,
|
|
nk = 0,
|
|
ok = 0,
|
|
hk = (a + 172) | 0;
|
|
if (
|
|
(n[q[1807]](
|
|
hk,
|
|
q[(a + 196) >> 2],
|
|
q[(a + 268) >> 2],
|
|
q[(a + 264) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
hk,
|
|
q[(a + 200) >> 2],
|
|
q[(a + 284) >> 2],
|
|
q[(a + 264) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
hk,
|
|
q[(a + 204) >> 2],
|
|
q[(a + 276) >> 2],
|
|
q[(a + 264) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
hk,
|
|
q[(a + 208) >> 2],
|
|
q[(a + 280) >> 2],
|
|
q[(a + 264) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
hk,
|
|
q[(a + 212) >> 2],
|
|
q[(a + 272) >> 2],
|
|
q[(a + 264) >> 2]
|
|
), !(
|
|
r[(q[a >> 2] + 4) | 0] < 4 ||
|
|
(n[q[1807]](
|
|
hk,
|
|
q[(a + 216) >> 2],
|
|
q[(a + 240) >> 2],
|
|
q[(a + 264) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
hk,
|
|
q[(a + 220) >> 2],
|
|
q[(a + 244) >> 2],
|
|
q[(a + 264) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
hk,
|
|
q[(a + 224) >> 2],
|
|
q[(a + 248) >> 2],
|
|
q[(a + 264) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
hk,
|
|
q[(a + 228) >> 2],
|
|
q[(a + 252) >> 2],
|
|
q[(a + 264) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
hk,
|
|
q[(a + 232) >> 2],
|
|
q[(a + 256) >> 2],
|
|
q[(a + 264) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
hk,
|
|
q[(a + 236) >> 2],
|
|
q[(a + 260) >> 2],
|
|
q[(a + 264) >> 2]
|
|
),
|
|
(0 | (mk = q[(a + 164) >> 2])) < 1)
|
|
))
|
|
) {
|
|
for (
|
|
nk = q[(a + 248) >> 2],
|
|
ok = q[(a + 244) >> 2],
|
|
pk = q[(a + 240) >> 2],
|
|
ik = q[(a + 296) >> 2],
|
|
hk = 0;
|
|
(q[((jk = kk << 2) + ik) >> 2] =
|
|
q[((lk = hk << 2) + pk) >> 2]),
|
|
(q[(ik + (4 | jk)) >> 2] = q[(lk + ok) >> 2]),
|
|
(q[(ik + (8 | jk)) >> 2] = q[(lk + nk) >> 2]),
|
|
(kk = (kk + 4) | 0),
|
|
(0 | mk) != (0 | (hk = (hk + 1) | 0));
|
|
|
|
);
|
|
for (
|
|
ik = q[(a + 300) >> 2],
|
|
lk = q[(a + 260) >> 2],
|
|
nk = q[(a + 256) >> 2],
|
|
ok = q[(a + 252) >> 2],
|
|
hk = a = 0;
|
|
(q[((kk = a << 2) + ik) >> 2] =
|
|
q[((jk = hk << 2) + ok) >> 2]),
|
|
(q[(ik + (4 | kk)) >> 2] = q[(jk + nk) >> 2]),
|
|
(q[(ik + (8 | kk)) >> 2] = q[(jk + lk) >> 2]),
|
|
(a = (a + 4) | 0),
|
|
(0 | mk) != (0 | (hk = (hk + 1) | 0));
|
|
|
|
);
|
|
}
|
|
})(a),
|
|
(function(a) {
|
|
var re,
|
|
se,
|
|
te,
|
|
oe = 0,
|
|
pe = 0,
|
|
qe = 0;
|
|
if (1 <= (0 | (pe = q[(a + 332) >> 2])))
|
|
for (
|
|
re = ((oe = q[(a + 336) >> 2]) + w(pe, 20)) | 0,
|
|
se = q[(a + 312) >> 2],
|
|
te = q[(a + 40) >> 2],
|
|
a = q[(a + 424) >> 2];
|
|
(pe = 0),
|
|
q[(oe + 12) >> 2] &&
|
|
((qe = q[(oe + 4) >> 2]),
|
|
q[((qe << 2) + te) >> 2] || -1 == (0 | qe)) &&
|
|
((qe = q[(oe + 8) >> 2]),
|
|
q[((qe << 2) + se) >> 2] || -1 == (0 | qe)) &&
|
|
(pe = !q[(q[oe >> 2] + 32) >> 2]),
|
|
(q[a >> 2] = pe),
|
|
(a = (a + 4) | 0),
|
|
(oe = (oe + 20) | 0) >>> 0 < re >>> 0;
|
|
|
|
);
|
|
})(a),
|
|
(function(a) {
|
|
var pf,
|
|
qf,
|
|
rf,
|
|
sf,
|
|
tf,
|
|
uf,
|
|
vf,
|
|
wf,
|
|
$e = 0,
|
|
af = 0,
|
|
bf = 0,
|
|
cf = 0,
|
|
df = 0,
|
|
ef = 0,
|
|
ff = 0,
|
|
gf = 0,
|
|
hf = 0,
|
|
jf = 0,
|
|
kf = 0,
|
|
lf = 0,
|
|
mf = 0,
|
|
nf = 0,
|
|
of = 0,
|
|
cf = q[a >> 2];
|
|
if (1 <= (0 | (jf = q[(a + 332) >> 2]))) {
|
|
for (
|
|
kf = q[(a + 336) >> 2],
|
|
lf = q[(cf + 1052) >> 2],
|
|
mf = q[(cf + 856) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
(($e = q[(kf + w(ff, 20)) >> 2]),
|
|
(q[($e + 28) >> 2] || q[($e + 24) >> 2]) &&
|
|
((q[((af = ff << 2) + q[(a + 356) >> 2]) >> 2] =
|
|
q[($e + 12) >> 2]),
|
|
q[($e + 24) >> 2]) &&
|
|
!((0 | (df = q[($e + 12) >> 2])) < 1))
|
|
)
|
|
for (
|
|
nf = ((bf = q[($e + 16) >> 2]) + (df << 2)) | 0,
|
|
of = q[(af + mf) >> 2],
|
|
af = ((ef = gf << 2) + q[(a + 372) >> 2]) | 0,
|
|
df = (ef + q[(a + 364) >> 2]) | 0,
|
|
ef = (ef + q[(a + 368) >> 2]) | 0;
|
|
(hf = (of + q[bf >> 2]) << 2),
|
|
(q[af >> 2] =
|
|
lf + (q[(hf + q[(cf + 1040) >> 2]) >> 2] << 2)),
|
|
(q[df >> 2] = q[(hf + q[(cf + 1032) >> 2]) >> 2]),
|
|
(q[ef >> 2] = q[(hf + q[(cf + 1036) >> 2]) >> 2]),
|
|
(ef = (ef + 4) | 0),
|
|
(df = (df + 4) | 0),
|
|
(af = (af + 4) | 0),
|
|
(bf = (bf + 4) | 0) >>> 0 < nf >>> 0;
|
|
|
|
);
|
|
if (
|
|
q[($e + 28) >> 2] &&
|
|
!((0 | (af = q[($e + 12) >> 2])) < 1)
|
|
)
|
|
for (
|
|
df = ((bf = q[($e + 20) >> 2]) + (af << 2)) | 0,
|
|
af = (q[(a + 360) >> 2] + (gf << 2)) | 0;
|
|
(q[af >> 2] = q[bf >> 2]),
|
|
(af = (af + 4) | 0),
|
|
(bf = (bf + 4) | 0) >>> 0 < df >>> 0;
|
|
|
|
);
|
|
if (
|
|
((gf = (q[($e + 8) >> 2] + gf) | 0),
|
|
(0 | jf) == (0 | (ff = (ff + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
cf = q[a >> 2];
|
|
}
|
|
if (!(
|
|
r[(cf + 4) | 0] < 4 ||
|
|
(0 | (mf = q[(a + 332) >> 2])) < 1
|
|
))
|
|
for (
|
|
nf = q[(cf + 864) >> 2],
|
|
of = q[(a + 336) >> 2],
|
|
bf = gf = 0;;
|
|
|
|
) {
|
|
if (
|
|
((ff = q[(of + w(bf, 20)) >> 2]),
|
|
q[(ff + 24) >> 2] &&
|
|
!((0 | ($e = q[(ff + 12) >> 2])) < 1))
|
|
)
|
|
for (
|
|
pf = ((af = q[(ff + 16) >> 2]) + ($e << 2)) | 0,
|
|
qf = q[(nf + (bf << 2)) >> 2],
|
|
df = (($e = gf << 2) + q[(a + 376) >> 2]) | 0,
|
|
ef = ($e + q[(a + 380) >> 2]) | 0,
|
|
hf = ($e + q[(a + 384) >> 2]) | 0,
|
|
jf = ($e + q[(a + 388) >> 2]) | 0,
|
|
kf = ($e + q[(a + 392) >> 2]) | 0,
|
|
lf = ($e + q[(a + 396) >> 2]) | 0,
|
|
rf = q[(cf + 1308) >> 2],
|
|
sf = q[(cf + 1304) >> 2],
|
|
tf = q[(cf + 1300) >> 2],
|
|
uf = q[(cf + 1296) >> 2],
|
|
vf = q[(cf + 1292) >> 2],
|
|
wf = q[(cf + 1288) >> 2];
|
|
($e = (q[af >> 2] + qf) << 2),
|
|
(q[df >> 2] = q[($e + wf) >> 2]),
|
|
(q[ef >> 2] = q[($e + vf) >> 2]),
|
|
(q[hf >> 2] = q[($e + uf) >> 2]),
|
|
(q[jf >> 2] = q[($e + tf) >> 2]),
|
|
(q[kf >> 2] = q[($e + sf) >> 2]),
|
|
(q[lf >> 2] = q[($e + rf) >> 2]),
|
|
(lf = (lf + 4) | 0),
|
|
(kf = (kf + 4) | 0),
|
|
(jf = (jf + 4) | 0),
|
|
(hf = (hf + 4) | 0),
|
|
(ef = (ef + 4) | 0),
|
|
(df = (df + 4) | 0),
|
|
(af = (af + 4) | 0) >>> 0 < pf >>> 0;
|
|
|
|
);
|
|
if (
|
|
((gf = (q[(ff + 8) >> 2] + gf) | 0),
|
|
(0 | mf) == (0 | (bf = (bf + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
})(a),
|
|
(function(a) {
|
|
var gk,
|
|
vj = 0,
|
|
xj = 0,
|
|
yj = 0,
|
|
bk = 0,
|
|
ck = 0,
|
|
dk = 0,
|
|
ek = 0,
|
|
fk = 0,
|
|
vj = (a + 340) | 0;
|
|
if (
|
|
(n[q[1807]](
|
|
vj,
|
|
q[(a + 364) >> 2],
|
|
q[(a + 448) >> 2],
|
|
q[(a + 424) >> 2]
|
|
),
|
|
n[q[1808]](
|
|
vj,
|
|
q[(a + 368) >> 2],
|
|
q[(a + 440) >> 2],
|
|
q[(a + 424) >> 2]
|
|
),
|
|
n[q[1809]](
|
|
vj,
|
|
q[(a + 372) >> 2],
|
|
q[(a + 444) >> 2],
|
|
q[(q[a >> 2] + 892) >> 2],
|
|
2,
|
|
q[(a + 424) >> 2]
|
|
), !(
|
|
r[(q[a >> 2] + 4) | 0] < 4 ||
|
|
(n[q[1807]](
|
|
vj,
|
|
q[(a + 376) >> 2],
|
|
q[(a + 400) >> 2],
|
|
q[(a + 424) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
vj,
|
|
q[(a + 380) >> 2],
|
|
q[(a + 404) >> 2],
|
|
q[(a + 424) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
vj,
|
|
q[(a + 384) >> 2],
|
|
q[(a + 408) >> 2],
|
|
q[(a + 424) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
vj,
|
|
q[(a + 388) >> 2],
|
|
q[(a + 412) >> 2],
|
|
q[(a + 424) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
vj,
|
|
q[(a + 392) >> 2],
|
|
q[(a + 416) >> 2],
|
|
q[(a + 424) >> 2]
|
|
),
|
|
n[q[1807]](
|
|
vj,
|
|
q[(a + 396) >> 2],
|
|
q[(a + 420) >> 2],
|
|
q[(a + 424) >> 2]
|
|
),
|
|
(0 | (dk = q[(a + 332) >> 2])) < 1)
|
|
))
|
|
) {
|
|
for (
|
|
ek = q[(a + 408) >> 2],
|
|
fk = q[(a + 404) >> 2],
|
|
gk = q[(a + 400) >> 2],
|
|
xj = q[(a + 452) >> 2],
|
|
vj = 0;
|
|
(q[((yj = bk << 2) + xj) >> 2] =
|
|
q[((ck = vj << 2) + gk) >> 2]),
|
|
(q[(xj + (4 | yj)) >> 2] = q[(ck + fk) >> 2]),
|
|
(q[(xj + (8 | yj)) >> 2] = q[(ck + ek) >> 2]),
|
|
(bk = (bk + 4) | 0),
|
|
(0 | dk) != (0 | (vj = (vj + 1) | 0));
|
|
|
|
);
|
|
for (
|
|
xj = q[(a + 456) >> 2],
|
|
ck = q[(a + 420) >> 2],
|
|
ek = q[(a + 416) >> 2],
|
|
fk = q[(a + 412) >> 2],
|
|
vj = a = 0;
|
|
(q[((bk = a << 2) + xj) >> 2] =
|
|
q[((yj = vj << 2) + fk) >> 2]),
|
|
(q[(xj + (4 | bk)) >> 2] = q[(yj + ek) >> 2]),
|
|
(q[(xj + (8 | bk)) >> 2] = q[(yj + ck) >> 2]),
|
|
(a = (a + 4) | 0),
|
|
(0 | dk) != (0 | (vj = (vj + 1) | 0));
|
|
|
|
);
|
|
}
|
|
})(a),
|
|
(function(a) {
|
|
var Re,
|
|
Ve,
|
|
We,
|
|
Xe,
|
|
Ye,
|
|
Ze,
|
|
_e,
|
|
Pe = 0,
|
|
Qe = 0,
|
|
Se = 0,
|
|
Te = 0,
|
|
Ue = 0;
|
|
if (1 <= (0 | (Ve = q[(a + 500) >> 2])))
|
|
for (
|
|
Xe = q[(a + 504) >> 2],
|
|
We = q[a >> 2],
|
|
Ye = q[(We + 1252) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((Re = q[(w(Te, 24) + Xe) >> 2]),
|
|
(q[(Re + 28) >> 2] || q[(Re + 24) >> 2]) &&
|
|
((q[((Pe = Te << 2) + q[(a + 524) >> 2]) >> 2] =
|
|
q[(Re + 12) >> 2]),
|
|
q[(Re + 24) >> 2]) &&
|
|
!((0 | (Se = q[(Re + 12) >> 2])) < 1))
|
|
)
|
|
for (
|
|
Se = ((Qe = q[(Re + 16) >> 2]) + (Se << 2)) | 0,
|
|
Ze = q[(Pe + Ye) >> 2],
|
|
Pe = (q[(a + 532) >> 2] + (Ue << 2)) | 0,
|
|
_e = q[(We + 1284) >> 2];
|
|
(q[Pe >> 2] =
|
|
q[(((q[Qe >> 2] + Ze) << 2) + _e) >> 2]),
|
|
(Pe = (Pe + 4) | 0),
|
|
(Qe = (Qe + 4) | 0) >>> 0 < Se >>> 0;
|
|
|
|
);
|
|
if (
|
|
q[(Re + 28) >> 2] &&
|
|
!((0 | (Pe = q[(Re + 12) >> 2])) < 1)
|
|
)
|
|
for (
|
|
Se = ((Qe = q[(Re + 20) >> 2]) + (Pe << 2)) | 0,
|
|
Pe = (q[(a + 528) >> 2] + (Ue << 2)) | 0;
|
|
(q[Pe >> 2] = q[Qe >> 2]),
|
|
(Pe = (Pe + 4) | 0),
|
|
(Qe = (Qe + 4) | 0) >>> 0 < Se >>> 0;
|
|
|
|
);
|
|
if (
|
|
((Ue = (q[(Re + 8) >> 2] + Ue) | 0),
|
|
(0 | Ve) == (0 | (Te = (Te + 1) | 0)))
|
|
)
|
|
break;
|
|
}
|
|
})(a),
|
|
n[q[1807]](
|
|
(a + 508) | 0,
|
|
q[(a + 532) >> 2],
|
|
q[(a + 536) >> 2],
|
|
0
|
|
),
|
|
(function(a) {
|
|
var Ek,
|
|
Fk,
|
|
Gk,
|
|
Hk,
|
|
Ik,
|
|
Jk,
|
|
zk = x(0),
|
|
Ak = 0,
|
|
Bk = 0,
|
|
Ck = 0,
|
|
Dk = 0;
|
|
x(0);
|
|
if (
|
|
((L = Ek = (L - 16) | 0),
|
|
(Ck = q[a >> 2]), !(
|
|
r[(Ck + 4) | 0] < 5 ||
|
|
(0 | (Dk = q[(a + 596) >> 2])) < 1
|
|
))
|
|
)
|
|
for (
|
|
Hk = ((Bk = q[(a + 600) >> 2]) + w(Dk, 12)) | 0,
|
|
Ik = q[(a + 44) >> 2],
|
|
Dk = q[(Ck + 976) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((Ck = ((q[Bk >> 2] << 2) + Ik) | 0),
|
|
(zk = x(q[Ck >> 2])),
|
|
1 <= (0 | (Ak = q[(Bk + 4) >> 2])))
|
|
)
|
|
for (
|
|
Jk = ((a = q[(Bk + 8) >> 2]) + w(Ak, 48)) | 0;
|
|
(Ak = q[(a + 8) >> 2]) &&
|
|
((Fk = (Ak + -1) | 0) >>> 0 <= 1 ?
|
|
((Ak = q[(a + 4) >> 2]),
|
|
(Gk =
|
|
u[
|
|
(Dk + ((Ak + q[(a + 12) >> 2]) << 2)) >> 2
|
|
]),
|
|
(zk = x(
|
|
Fk - 1 ?
|
|
zk +
|
|
x(
|
|
u[(a + 44) >> 2] *
|
|
x(Gk * u[(a + 20) >> 2])
|
|
) :
|
|
zk +
|
|
x(
|
|
u[(a + 44) >> 2] *
|
|
x(
|
|
x(Gk * u[(a + 20) >> 2]) +
|
|
x(
|
|
u[
|
|
(Dk +
|
|
((Ak +
|
|
q[(a + 16) >> 2]) <<
|
|
2)) >>
|
|
2
|
|
] * u[(a + 24) >> 2]
|
|
)
|
|
)
|
|
)
|
|
))) :
|
|
((q[Ek >> 2] = Ak), Y(4, 1024, Ek))),
|
|
(a = (a + 48) | 0) >>> 0 < Jk >>> 0;
|
|
|
|
);
|
|
if (
|
|
((zk =
|
|
(zk = x(zk + x(0.0010000000474974513))) < x(0) ?
|
|
x(0) :
|
|
x(A(zk, x(1e3)))),
|
|
(a = x(y(zk)) < x(2147483648) ? ~~zk : -2147483648),
|
|
(q[Ck >> 2] = a), !((Bk = (Bk + 12) | 0) >>> 0 < Hk >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
L = (16 + Ek) | 0;
|
|
})(a),
|
|
(function(a) {
|
|
var mj,
|
|
nj,
|
|
oj,
|
|
pj,
|
|
qj,
|
|
rj,
|
|
sj,
|
|
tj,
|
|
uj,
|
|
ej = 0,
|
|
gj = 0,
|
|
ij = 0,
|
|
jj = 0,
|
|
kj = 0,
|
|
lj = x(0);
|
|
if (
|
|
((L = mj = (L - 16) | 0),
|
|
(ej = q[a >> 2]), !(
|
|
r[(ej + 4) | 0] < 4 ||
|
|
(va(
|
|
a,
|
|
q[(a + 604) >> 2],
|
|
q[(a + 608) >> 2],
|
|
q[(ej + 984) >> 2],
|
|
q[(a + 152) >> 2],
|
|
q[(ej + 796) >> 2]
|
|
),
|
|
(gj = q[a >> 2]),
|
|
r[(gj + 4) | 0] < 5)
|
|
))
|
|
) {
|
|
if (
|
|
((ij = q[(a + 608) >> 2]),
|
|
(qj = q[(gj + 992) >> 2]),
|
|
(rj = q[(gj + 988) >> 2]),
|
|
1 <= (0 | (ej = q[(a + 604) >> 2])))
|
|
) {
|
|
for (
|
|
sj = (w(ej, 12) + ij) | 0,
|
|
tj = q[(a + 148) >> 2],
|
|
nj = q[(gj + 980) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((oj = ((q[ij >> 2] << 2) + tj) | 0),
|
|
(kj = q[oj >> 2]),
|
|
1 <= (0 | (jj = q[(ij + 4) >> 2])))
|
|
)
|
|
for (
|
|
uj = ((ej = q[(ij + 8) >> 2]) + w(jj, 48)) | 0;
|
|
(jj = q[(ej + 8) >> 2]) &&
|
|
((pj = (jj + -1) | 0) >>> 0 <= 1 ?
|
|
((jj = q[(ej + 4) >> 2]),
|
|
(lj =
|
|
u[
|
|
(((jj + q[(ej + 12) >> 2]) << 2) +
|
|
nj) >>
|
|
2
|
|
]),
|
|
j(
|
|
x(
|
|
pj - 1 ?
|
|
x(
|
|
u[(ej + 44) >> 2] *
|
|
x(lj * u[(ej + 20) >> 2])
|
|
) + (f(0, kj), k()) :
|
|
x(
|
|
u[(ej + 44) >> 2] *
|
|
x(
|
|
x(lj * u[(ej + 20) >> 2]) +
|
|
x(
|
|
u[
|
|
(((jj +
|
|
q[(ej + 16) >> 2]) <<
|
|
2) +
|
|
nj) >>
|
|
2
|
|
] * u[(ej + 24) >> 2]
|
|
)
|
|
)
|
|
) + (f(0, kj), k())
|
|
)
|
|
),
|
|
(kj = b[0])) :
|
|
((q[mj >> 2] = jj), Y(4, 1024, mj))),
|
|
(ej = (ej + 48) | 0) >>> 0 < uj >>> 0;
|
|
|
|
);
|
|
if (
|
|
(f(0, kj),
|
|
(lj = k()),
|
|
(u[oj >> 2] = lj < x(0) ? x(0) : x(A(lj, x(1)))), !((ij = (ij + 12) | 0) >>> 0 < sj >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
(ij = q[(a + 608) >> 2]), (ej = q[(a + 604) >> 2]);
|
|
}
|
|
fa(
|
|
ej,
|
|
ij,
|
|
rj,
|
|
q[(gj + 1288) >> 2],
|
|
q[(gj + 1292) >> 2],
|
|
q[(gj + 1296) >> 2],
|
|
q[(a + 156) >> 2]
|
|
),
|
|
fa(
|
|
q[(a + 604) >> 2],
|
|
q[(a + 608) >> 2],
|
|
qj,
|
|
q[(gj + 1300) >> 2],
|
|
q[(gj + 1304) >> 2],
|
|
q[(gj + 1308) >> 2],
|
|
q[(a + 160) >> 2]
|
|
);
|
|
}
|
|
L = (16 + mj) | 0;
|
|
})(a),
|
|
(function(a) {
|
|
var zi,
|
|
si = 0,
|
|
ti = 0,
|
|
ui = 0,
|
|
vi = 0,
|
|
wi = 0,
|
|
xi = x(0),
|
|
yi = 0,
|
|
Ai = 0,
|
|
Bi = 0,
|
|
Ci = 0,
|
|
Di = 0,
|
|
Ei = 0,
|
|
Fi = 0,
|
|
Gi = 0;
|
|
if (
|
|
((L = zi = (L - 80) | 0),
|
|
(wi = q[a >> 2]), !(r[(wi + 4) | 0] < 5))
|
|
) {
|
|
if (
|
|
((Ei = q[(wi + 1028) >> 2]),
|
|
(Fi = q[(wi + 1024) >> 2]),
|
|
(ui = ti = q[(a + 616) >> 2]), !((0 | (si = q[(a + 612) >> 2])) < 1))
|
|
) {
|
|
for (
|
|
Ai = (w(si, 12) + ti) | 0,
|
|
Bi = q[(a + 276) >> 2],
|
|
yi = q[(wi + 1004) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((Ci = (Bi + (q[ti >> 2] << 2)) | 0),
|
|
(ui = q[Ci >> 2]),
|
|
1 <= (0 | (vi = q[(ti + 4) >> 2])))
|
|
)
|
|
for (
|
|
Gi = ((si = q[(ti + 8) >> 2]) + w(vi, 48)) | 0;
|
|
(vi = q[(si + 8) >> 2]) &&
|
|
((Di = (vi + -1) | 0) >>> 0 <= 1 ?
|
|
((vi = q[(si + 4) >> 2]),
|
|
(xi =
|
|
u[
|
|
(yi +
|
|
((vi + q[(si + 12) >> 2]) << 2)) >>
|
|
2
|
|
]),
|
|
j(
|
|
x(
|
|
Di - 1 ?
|
|
x(
|
|
u[(si + 44) >> 2] *
|
|
x(xi * u[(si + 20) >> 2])
|
|
) + (f(0, ui), k()) :
|
|
x(
|
|
u[(si + 44) >> 2] *
|
|
x(
|
|
x(xi * u[(si + 20) >> 2]) +
|
|
x(
|
|
u[
|
|
(yi +
|
|
((vi +
|
|
q[
|
|
(si + 16) >> 2
|
|
]) <<
|
|
2)) >>
|
|
2
|
|
] * u[(si + 24) >> 2]
|
|
)
|
|
)
|
|
) + (f(0, ui), k())
|
|
)
|
|
),
|
|
(ui = b[0])) :
|
|
((q[(64 + zi) >> 2] = vi),
|
|
Y(4, 1024, (64 + zi) | 0))),
|
|
(si = (si + 48) | 0) >>> 0 < Gi >>> 0;
|
|
|
|
);
|
|
if (
|
|
((q[Ci >> 2] = ui), !((ti = (ti + 12) | 0) >>> 0 < Ai >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
if (
|
|
((ui = ti = q[(a + 616) >> 2]), !((0 | (si = q[(a + 612) >> 2])) < 1))
|
|
) {
|
|
for (
|
|
Ai = (w(si, 12) + ti) | 0,
|
|
Bi = q[(a + 280) >> 2],
|
|
yi = q[(q[a >> 2] + 1008) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((Ci = (Bi + (q[ti >> 2] << 2)) | 0),
|
|
(ui = q[Ci >> 2]),
|
|
1 <= (0 | (vi = q[(ti + 4) >> 2])))
|
|
)
|
|
for (
|
|
Gi = ((si = q[(ti + 8) >> 2]) + w(vi, 48)) | 0;
|
|
(vi = q[(si + 8) >> 2]) &&
|
|
((Di = (vi + -1) | 0) >>> 0 <= 1 ?
|
|
((vi = q[(si + 4) >> 2]),
|
|
(xi =
|
|
u[
|
|
(yi +
|
|
((vi + q[(si + 12) >> 2]) << 2)) >>
|
|
2
|
|
]),
|
|
j(
|
|
x(
|
|
Di - 1 ?
|
|
x(
|
|
u[(si + 44) >> 2] *
|
|
x(xi * u[(si + 20) >> 2])
|
|
) + (f(0, ui), k()) :
|
|
x(
|
|
u[(si + 44) >> 2] *
|
|
x(
|
|
x(xi * u[(si + 20) >> 2]) +
|
|
x(
|
|
u[
|
|
(yi +
|
|
((vi +
|
|
q[
|
|
(si + 16) >> 2
|
|
]) <<
|
|
2)) >>
|
|
2
|
|
] * u[(si + 24) >> 2]
|
|
)
|
|
)
|
|
) + (f(0, ui), k())
|
|
)
|
|
),
|
|
(ui = b[0])) :
|
|
((q[(48 + zi) >> 2] = vi),
|
|
Y(4, 1024, (48 + zi) | 0))),
|
|
(si = (si + 48) | 0) >>> 0 < Gi >>> 0;
|
|
|
|
);
|
|
if (
|
|
((q[Ci >> 2] = ui), !((ti = (ti + 12) | 0) >>> 0 < Ai >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
if (
|
|
((ui = ti = q[(a + 616) >> 2]), !((0 | (si = q[(a + 612) >> 2])) < 1))
|
|
) {
|
|
for (
|
|
Ai = (w(si, 12) + ti) | 0,
|
|
Bi = q[(a + 268) >> 2],
|
|
yi = q[(q[a >> 2] + 996) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((Ci = (Bi + (q[ti >> 2] << 2)) | 0),
|
|
(ui = q[Ci >> 2]),
|
|
1 <= (0 | (vi = q[(ti + 4) >> 2])))
|
|
)
|
|
for (
|
|
Gi =
|
|
((si = q[(ti + 8) >> 2]) + w(vi, 48)) | 0;
|
|
(vi = q[(si + 8) >> 2]) &&
|
|
((Di = (vi + -1) | 0) >>> 0 <= 1 ?
|
|
((vi = q[(si + 4) >> 2]),
|
|
(xi =
|
|
u[
|
|
(yi +
|
|
((vi + q[(si + 12) >> 2]) <<
|
|
2)) >>
|
|
2
|
|
]),
|
|
j(
|
|
x(
|
|
Di - 1 ?
|
|
x(
|
|
u[(si + 44) >> 2] *
|
|
x(xi * u[(si + 20) >> 2])
|
|
) + (f(0, ui), k()) :
|
|
x(
|
|
u[(si + 44) >> 2] *
|
|
x(
|
|
x(
|
|
xi * u[(si + 20) >> 2]
|
|
) +
|
|
x(
|
|
u[
|
|
(yi +
|
|
((vi +
|
|
q[
|
|
(si + 16) >> 2
|
|
]) <<
|
|
2)) >>
|
|
2
|
|
] * u[(si + 24) >> 2]
|
|
)
|
|
)
|
|
) + (f(0, ui), k())
|
|
)
|
|
),
|
|
(ui = b[0])) :
|
|
((q[(32 + zi) >> 2] = vi),
|
|
Y(4, 1024, (32 + zi) | 0))),
|
|
(si = (si + 48) | 0) >>> 0 < Gi >>> 0;
|
|
|
|
);
|
|
if (
|
|
(f(0, ui),
|
|
(xi = k()),
|
|
(u[Ci >> 2] =
|
|
xi < x(0) ? x(0) : x(A(xi, x(1)))), !((ti = (ti + 12) | 0) >>> 0 < Ai >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
(si = q[(a + 612) >> 2]), (ui = q[(a + 616) >> 2]);
|
|
}
|
|
}
|
|
}
|
|
if (
|
|
(fa(
|
|
si,
|
|
ui,
|
|
Fi,
|
|
q[(wi + 1288) >> 2],
|
|
q[(wi + 1292) >> 2],
|
|
q[(wi + 1296) >> 2],
|
|
q[(a + 296) >> 2]
|
|
),
|
|
fa(
|
|
q[(a + 612) >> 2],
|
|
q[(a + 616) >> 2],
|
|
Ei,
|
|
q[(wi + 1300) >> 2],
|
|
q[(wi + 1304) >> 2],
|
|
q[(wi + 1308) >> 2],
|
|
q[(a + 300) >> 2]
|
|
), !((0 | (si = q[(a + 612) >> 2])) < 1))
|
|
) {
|
|
for (
|
|
vi = ((ti = q[(a + 616) >> 2]) + w(si, 12)) | 0,
|
|
Ei = q[(a + 284) >> 2],
|
|
wi = q[(q[a >> 2] + 1e3) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((Fi = (Ei + (q[ti >> 2] << 2)) | 0),
|
|
(ui = q[Fi >> 2]),
|
|
1 <= (0 | (yi = q[(ti + 4) >> 2])))
|
|
)
|
|
for (
|
|
Ai = ((si = q[(ti + 8) >> 2]) + w(yi, 48)) | 0;
|
|
(yi = q[(si + 8) >> 2]) &&
|
|
((Bi = (yi + -1) | 0) >>> 0 <= 1 ?
|
|
((yi = q[(si + 4) >> 2]),
|
|
(xi =
|
|
u[
|
|
(wi +
|
|
((yi + q[(si + 12) >> 2]) << 2)) >>
|
|
2
|
|
]),
|
|
j(
|
|
x(
|
|
Bi - 1 ?
|
|
x(
|
|
u[(si + 44) >> 2] *
|
|
x(xi * u[(si + 20) >> 2])
|
|
) + (f(0, ui), k()) :
|
|
x(
|
|
u[(si + 44) >> 2] *
|
|
x(
|
|
x(xi * u[(si + 20) >> 2]) +
|
|
x(
|
|
u[
|
|
(wi +
|
|
((yi +
|
|
q[
|
|
(si + 16) >> 2
|
|
]) <<
|
|
2)) >>
|
|
2
|
|
] * u[(si + 24) >> 2]
|
|
)
|
|
)
|
|
) + (f(0, ui), k())
|
|
)
|
|
),
|
|
(ui = b[0])) :
|
|
((q[(16 + zi) >> 2] = yi),
|
|
Y(4, 1024, (16 + zi) | 0))),
|
|
(si = (si + 48) | 0) >>> 0 < Ai >>> 0;
|
|
|
|
);
|
|
if (
|
|
(f(0, ui),
|
|
(xi = k()),
|
|
(u[Fi >> 2] =
|
|
xi < x(-3600) ? x(-3600) : x(A(xi, x(3600)))), !((ti = (ti + 12) | 0) >>> 0 < vi >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
if (!((0 | (si = q[(a + 612) >> 2])) < 1))
|
|
for (
|
|
yi = ((ti = q[(a + 616) >> 2]) + w(si, 12)) | 0,
|
|
vi = q[(a + 272) >> 2],
|
|
a = q[(q[a >> 2] + 1012) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((Ei = (vi + (q[ti >> 2] << 2)) | 0),
|
|
(ui = q[Ei >> 2]),
|
|
1 <= (0 | (wi = q[(ti + 4) >> 2])))
|
|
)
|
|
for (
|
|
Fi = ((si = q[(ti + 8) >> 2]) + w(wi, 48)) | 0;
|
|
(wi = q[(si + 8) >> 2]) &&
|
|
((Ai = (wi + -1) | 0) >>> 0 <= 1 ?
|
|
((wi = q[(si + 4) >> 2]),
|
|
(xi =
|
|
u[
|
|
(a +
|
|
((wi + q[(si + 12) >> 2]) << 2)) >>
|
|
2
|
|
]),
|
|
j(
|
|
x(
|
|
Ai - 1 ?
|
|
x(
|
|
u[(si + 44) >> 2] *
|
|
x(xi * u[(si + 20) >> 2])
|
|
) + (f(0, ui), k()) :
|
|
x(
|
|
u[(si + 44) >> 2] *
|
|
x(
|
|
x(xi * u[(si + 20) >> 2]) +
|
|
x(
|
|
u[
|
|
(a +
|
|
((wi +
|
|
q[
|
|
(si + 16) >> 2
|
|
]) <<
|
|
2)) >>
|
|
2
|
|
] * u[(si + 24) >> 2]
|
|
)
|
|
)
|
|
) + (f(0, ui), k())
|
|
)
|
|
),
|
|
(ui = b[0])) :
|
|
((q[zi >> 2] = wi), Y(4, 1024, zi))),
|
|
(si = (si + 48) | 0) >>> 0 < Fi >>> 0;
|
|
|
|
);
|
|
if (
|
|
(f(0, ui),
|
|
(xi = k()),
|
|
(u[Ei >> 2] =
|
|
xi < x(9999999747378752e-20) ?
|
|
x(9999999747378752e-20) :
|
|
x(A(xi, x(100)))), !((ti = (ti + 12) | 0) >>> 0 < yi >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
L = (80 + zi) | 0;
|
|
})(a),
|
|
(function(a) {
|
|
var $h,
|
|
fi,
|
|
gi,
|
|
hi,
|
|
ii,
|
|
Vh = 0,
|
|
Wh = 0,
|
|
Xh = 0,
|
|
Yh = 0,
|
|
Zh = x(0),
|
|
_h = 0,
|
|
ai = 0,
|
|
bi = 0,
|
|
ci = 0,
|
|
di = 0,
|
|
ei = 0;
|
|
x(0);
|
|
if (
|
|
((L = $h = (L - 32) | 0),
|
|
(Xh = q[a >> 2]), !(
|
|
r[(Xh + 4) | 0] < 4 ||
|
|
(va(
|
|
a,
|
|
q[(a + 620) >> 2],
|
|
q[(a + 624) >> 2],
|
|
q[(Xh + 1040) >> 2],
|
|
q[(a + 444) >> 2],
|
|
q[(Xh + 892) >> 2]
|
|
),
|
|
(_h = q[a >> 2]),
|
|
r[(_h + 4) | 0] < 5)
|
|
))
|
|
) {
|
|
if (
|
|
((hi = q[(_h + 1048) >> 2]),
|
|
(ii = q[(_h + 1044) >> 2]),
|
|
(Xh = Yh = q[(a + 624) >> 2]), !((0 | (Vh = q[(a + 620) >> 2])) < 1))
|
|
) {
|
|
for (
|
|
di = (w(Vh, 12) + Yh) | 0,
|
|
ei = q[(a + 440) >> 2],
|
|
ai = q[(_h + 1036) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((Xh = (ei + (q[Yh >> 2] << 2)) | 0),
|
|
(Zh = x(q[Xh >> 2])),
|
|
1 <= (0 | (Wh = q[(Yh + 4) >> 2])))
|
|
)
|
|
for (
|
|
bi = ((Vh = q[(Yh + 8) >> 2]) + w(Wh, 48)) | 0;
|
|
(Wh = q[(Vh + 8) >> 2]) &&
|
|
((ci = (Wh + -1) | 0) >>> 0 <= 1 ?
|
|
((Wh = q[(Vh + 4) >> 2]),
|
|
(fi =
|
|
u[
|
|
(ai +
|
|
((Wh + q[(Vh + 12) >> 2]) << 2)) >>
|
|
2
|
|
]),
|
|
(Zh = x(
|
|
ci - 1 ?
|
|
Zh +
|
|
x(
|
|
u[(Vh + 44) >> 2] *
|
|
x(fi * u[(Vh + 20) >> 2])
|
|
) :
|
|
Zh +
|
|
x(
|
|
u[(Vh + 44) >> 2] *
|
|
x(
|
|
x(fi * u[(Vh + 20) >> 2]) +
|
|
x(
|
|
u[
|
|
(ai +
|
|
((Wh +
|
|
q[
|
|
(Vh + 16) >> 2
|
|
]) <<
|
|
2)) >>
|
|
2
|
|
] * u[(Vh + 24) >> 2]
|
|
)
|
|
)
|
|
)
|
|
))) :
|
|
((q[(16 + $h) >> 2] = Wh),
|
|
Y(4, 1024, (16 + $h) | 0))),
|
|
(Vh = (Vh + 48) | 0) >>> 0 < bi >>> 0;
|
|
|
|
);
|
|
if (
|
|
((Zh =
|
|
(Zh = x(Zh + x(0.0010000000474974513))) < x(0) ?
|
|
x(0) :
|
|
x(A(Zh, x(1e3)))),
|
|
(Vh =
|
|
x(y(Zh)) < x(2147483648) ? ~~Zh : -2147483648),
|
|
(q[Xh >> 2] = Vh), !((Yh = (Yh + 12) | 0) >>> 0 < di >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
if (
|
|
((Xh = Yh = q[(a + 624) >> 2]), !((0 | (Vh = q[(a + 620) >> 2])) < 1))
|
|
) {
|
|
for (
|
|
di = (w(Vh, 12) + Yh) | 0,
|
|
ei = q[(a + 448) >> 2],
|
|
ai = q[(q[a >> 2] + 1032) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((bi = (ei + (q[Yh >> 2] << 2)) | 0),
|
|
(Xh = q[bi >> 2]),
|
|
1 <= (0 | (Wh = q[(Yh + 4) >> 2])))
|
|
)
|
|
for (
|
|
ci = ((Vh = q[(Yh + 8) >> 2]) + w(Wh, 48)) | 0;
|
|
(Wh = q[(Vh + 8) >> 2]) &&
|
|
((gi = (Wh + -1) | 0) >>> 0 <= 1 ?
|
|
((Wh = q[(Vh + 4) >> 2]),
|
|
(Zh =
|
|
u[
|
|
(ai +
|
|
((Wh + q[(Vh + 12) >> 2]) << 2)) >>
|
|
2
|
|
]),
|
|
j(
|
|
x(
|
|
gi - 1 ?
|
|
x(
|
|
u[(Vh + 44) >> 2] *
|
|
x(Zh * u[(Vh + 20) >> 2])
|
|
) + (f(0, Xh), k()) :
|
|
x(
|
|
u[(Vh + 44) >> 2] *
|
|
x(
|
|
x(Zh * u[(Vh + 20) >> 2]) +
|
|
x(
|
|
u[
|
|
(ai +
|
|
((Wh +
|
|
q[
|
|
(Vh + 16) >> 2
|
|
]) <<
|
|
2)) >>
|
|
2
|
|
] * u[(Vh + 24) >> 2]
|
|
)
|
|
)
|
|
) + (f(0, Xh), k())
|
|
)
|
|
),
|
|
(Xh = b[0])) :
|
|
((q[$h >> 2] = Wh), Y(4, 1024, $h))),
|
|
(Vh = (Vh + 48) | 0) >>> 0 < ci >>> 0;
|
|
|
|
);
|
|
if (
|
|
(f(0, Xh),
|
|
(Zh = k()),
|
|
(u[bi >> 2] = Zh < x(0) ? x(0) : x(A(Zh, x(1)))), !((Yh = (Yh + 12) | 0) >>> 0 < di >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
(Vh = q[(a + 620) >> 2]), (Xh = q[(a + 624) >> 2]);
|
|
}
|
|
}
|
|
fa(
|
|
Vh,
|
|
Xh,
|
|
ii,
|
|
q[(_h + 1288) >> 2],
|
|
q[(_h + 1292) >> 2],
|
|
q[(_h + 1296) >> 2],
|
|
q[(a + 452) >> 2]
|
|
),
|
|
fa(
|
|
q[(a + 620) >> 2],
|
|
q[(a + 624) >> 2],
|
|
hi,
|
|
q[(_h + 1300) >> 2],
|
|
q[(_h + 1304) >> 2],
|
|
q[(_h + 1308) >> 2],
|
|
q[(a + 456) >> 2]
|
|
);
|
|
}
|
|
L = (32 + $h) | 0;
|
|
})(a),
|
|
(function(a) {
|
|
var Gg,
|
|
Hg,
|
|
Ig,
|
|
Jg,
|
|
Kg,
|
|
Lg,
|
|
Bg = 0,
|
|
Cg = 0,
|
|
Dg = 0,
|
|
Eg = 0,
|
|
Fg = x(0);
|
|
if (
|
|
((L = Gg = (L - 16) | 0),
|
|
(Cg = q[a >> 2]), !(
|
|
r[(Cg + 4) | 0] < 5 ||
|
|
(0 | (Eg = q[(a + 628) >> 2])) < 1
|
|
))
|
|
)
|
|
for (
|
|
Jg = ((Dg = q[(a + 632) >> 2]) + w(Eg, 12)) | 0,
|
|
Kg = q[(a + 536) >> 2],
|
|
Eg = q[(Cg + 1284) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((Hg = ((q[Dg >> 2] << 2) + Kg) | 0),
|
|
(Cg = q[Hg >> 2]),
|
|
1 <= (0 | (Bg = q[(Dg + 4) >> 2])))
|
|
)
|
|
for (
|
|
Lg = ((a = q[(Dg + 8) >> 2]) + w(Bg, 48)) | 0;
|
|
(Bg = q[(a + 8) >> 2]) &&
|
|
((Ig = (Bg + -1) | 0) >>> 0 <= 1 ?
|
|
((Bg = q[(a + 4) >> 2]),
|
|
(Fg =
|
|
u[
|
|
(Eg + ((Bg + q[(a + 12) >> 2]) << 2)) >> 2
|
|
]),
|
|
j(
|
|
x(
|
|
Ig - 1 ?
|
|
x(
|
|
u[(a + 44) >> 2] *
|
|
x(Fg * u[(a + 20) >> 2])
|
|
) + (f(0, Cg), k()) :
|
|
x(
|
|
u[(a + 44) >> 2] *
|
|
x(
|
|
x(Fg * u[(a + 20) >> 2]) +
|
|
x(
|
|
u[
|
|
(Eg +
|
|
((Bg +
|
|
q[(a + 16) >> 2]) <<
|
|
2)) >>
|
|
2
|
|
] * u[(a + 24) >> 2]
|
|
)
|
|
)
|
|
) + (f(0, Cg), k())
|
|
)
|
|
),
|
|
(Cg = b[0])) :
|
|
((q[Gg >> 2] = Bg), Y(4, 1024, Gg))),
|
|
(a = (a + 48) | 0) >>> 0 < Lg >>> 0;
|
|
|
|
);
|
|
if (
|
|
(f(0, Cg),
|
|
(Fg = k()),
|
|
(u[Hg >> 2] = Fg < x(0) ? x(0) : x(A(Fg, x(1)))), !((Dg = (Dg + 12) | 0) >>> 0 < Jg >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
L = (16 + Gg) | 0;
|
|
})(a),
|
|
(function(a) {
|
|
var Qh,
|
|
Th,
|
|
mh = 0,
|
|
Oh = 0,
|
|
Ph = 0,
|
|
Rh = x(0),
|
|
Sh = 0;
|
|
if (1 <= (0 | (mh = q[(a + 4) >> 2])))
|
|
for (
|
|
Th = ((Oh = q[(a + 8) >> 2]) + w(mh, 12)) | 0,
|
|
mh = q[(a + 40) >> 2],
|
|
Ph = q[(a + 52) >> 2],
|
|
a = Qh = q[(a + 48) >> 2]; q[mh >> 2] &&
|
|
((Rh = u[Ph >> 2]),
|
|
(u[a >> 2] = Rh), -1 != (0 | (Sh = q[(Oh + 4) >> 2]))) &&
|
|
(u[a >> 2] = Rh * u[((Sh << 2) + Qh) >> 2]),
|
|
(a = (a + 4) | 0),
|
|
(Ph = (Ph + 4) | 0),
|
|
(mh = (mh + 4) | 0),
|
|
(Oh = (Oh + 12) | 0) >>> 0 < Th >>> 0;
|
|
|
|
);
|
|
})(a),
|
|
(function(a) {
|
|
var lh,
|
|
ih = 0,
|
|
jh = 0,
|
|
kh = 0;
|
|
if (1 <= (0 | (lh = q[(a + 304) >> 2])))
|
|
for (
|
|
ih = q[(a + 308) >> 2], jh = q[(a + 312) >> 2]; q[jh >> 2] && n[q[(ih + 20) >> 2]](a, kh),
|
|
(jh = (jh + 4) | 0),
|
|
(ih = (ih + 32) | 0),
|
|
(0 | lh) != (0 | (kh = (kh + 1) | 0));
|
|
|
|
);
|
|
})(a),
|
|
(function(a) {
|
|
var Zg,
|
|
_g,
|
|
ch,
|
|
gh,
|
|
hh,
|
|
Xg = 0,
|
|
Yg = 0,
|
|
$g = (x(0), x(0), 0),
|
|
ah = 0,
|
|
bh = 0,
|
|
dh = (x(0), 0),
|
|
eh = 0,
|
|
fh = 0;
|
|
if (1 <= (0 | (Xg = q[(a + 332) >> 2])))
|
|
for (
|
|
eh = ((Yg = q[(a + 336) >> 2]) + w(Xg, 20)) | 0,
|
|
fh = q[(a + 308) >> 2],
|
|
dh = q[(a + 316) >> 2],
|
|
hh = q[(a + 48) >> 2],
|
|
Xg = q[(a + 448) >> 2],
|
|
$g = q[(a + 444) >> 2],
|
|
bh = q[(a + 424) >> 2]; q[bh >> 2] &&
|
|
(-1 != (0 | (ah = q[(Yg + 4) >> 2])) &&
|
|
(u[Xg >> 2] =
|
|
u[((ah << 2) + hh) >> 2] * u[Xg >> 2]), -1 != (0 | (ah = q[(Yg + 8) >> 2]))) &&
|
|
((u[Xg >> 2] = u[(dh + (ah << 2)) >> 2] * u[Xg >> 2]),
|
|
(gh = q[$g >> 2]),
|
|
n[q[(24 + ((fh + (ah << 5)) | 0)) >> 2]](
|
|
a,
|
|
ah,
|
|
gh,
|
|
gh,
|
|
q[(Yg + 16) >> 2]
|
|
)),
|
|
($g = ($g + 4) | 0),
|
|
(Xg = (Xg + 4) | 0),
|
|
(bh = (bh + 4) | 0),
|
|
(Yg = (Yg + 20) | 0) >>> 0 < eh >>> 0;
|
|
|
|
);
|
|
if (!(
|
|
r[(q[a >> 2] + 4) | 0] < 4 ||
|
|
(0 | (Xg = q[(a + 332) >> 2])) < 1
|
|
))
|
|
for (
|
|
ah = (($g = q[(a + 336) >> 2]) + w(Xg, 20)) | 0,
|
|
eh = q[(a + 328) >> 2],
|
|
fh = q[(a + 324) >> 2],
|
|
Yg = q[(a + 452) >> 2],
|
|
Xg = q[(a + 456) >> 2],
|
|
bh = q[(a + 424) >> 2]; q[bh >> 2] &&
|
|
-1 != (0 | (a = q[($g + 8) >> 2])) &&
|
|
((a = ((dh = a << 4) + fh) | 0),
|
|
(Zg = x(u[Yg >> 2] * u[a >> 2])),
|
|
(u[Yg >> 2] = Zg),
|
|
(_g = x(u[(Yg + 4) >> 2] * u[(a + 4) >> 2])),
|
|
(u[(Yg + 4) >> 2] = _g),
|
|
(ch = u[(a + 8) >> 2]),
|
|
(q[(Yg + 12) >> 2] = 1065353216),
|
|
(u[(Yg + 4) >> 2] =
|
|
_g < x(0) ? x(0) : x(A(_g, x(1)))),
|
|
(u[Yg >> 2] = Zg < x(0) ? x(0) : x(A(Zg, x(1)))),
|
|
(Zg = x(ch * u[(Yg + 8) >> 2])),
|
|
(u[(Yg + 8) >> 2] =
|
|
Zg < x(0) ? x(0) : x(A(Zg, x(1)))),
|
|
(Zg = u[Xg >> 2]),
|
|
(_g = u[(a = (eh + dh) | 0) >> 2]),
|
|
(Zg = x(x(Zg + _g) - x(Zg * _g))),
|
|
(u[Xg >> 2] = Zg),
|
|
(_g = u[(Xg + 4) >> 2]),
|
|
(ch = u[(a + 4) >> 2]),
|
|
(_g = x(x(_g + ch) - x(_g * ch))),
|
|
(u[(Xg + 4) >> 2] = _g),
|
|
(ch = u[(a + 8) >> 2]),
|
|
(q[(Xg + 12) >> 2] = 1065353216),
|
|
(u[(Xg + 4) >> 2] =
|
|
_g < x(0) ? x(0) : x(A(_g, x(1)))),
|
|
(u[Xg >> 2] = Zg < x(0) ? x(0) : x(A(Zg, x(1)))),
|
|
(Zg = u[(Xg + 8) >> 2]),
|
|
(Zg = x(x(ch + Zg) - x(Zg * ch))),
|
|
(u[(Xg + 8) >> 2] =
|
|
Zg < x(0) ? x(0) : x(A(Zg, x(1))))),
|
|
(Xg = (Xg + 16) | 0),
|
|
(Yg = (Yg + 16) | 0),
|
|
(bh = (bh + 4) | 0),
|
|
($g = ($g + 20) | 0) >>> 0 < ah >>> 0;
|
|
|
|
);
|
|
})(a),
|
|
(function(a) {
|
|
var Ln,
|
|
Mn,
|
|
On,
|
|
Ko,
|
|
Lo,
|
|
Mo,
|
|
No,
|
|
Oo,
|
|
Po,
|
|
Qo,
|
|
Ro,
|
|
So,
|
|
To,
|
|
Uo,
|
|
Vo,
|
|
Wo,
|
|
Xo,
|
|
Yo,
|
|
Zo,
|
|
_o,
|
|
Nn = 0;
|
|
x(0), x(0), x(0), x(0), x(0), x(0), x(0);
|
|
if (1 <= (0 | (Oo = q[(a + 500) >> 2])))
|
|
for (
|
|
Zo = q[(a + 536) >> 2],
|
|
Po = q[(a + 444) >> 2],
|
|
_o = q[(a + 504) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
((a = (w(Nn, 24) + _o) | 0),
|
|
0 < (0 | (Qo = q[(a + 12) >> 2])))
|
|
)
|
|
for (
|
|
On = u[((Nn << 2) + Zo) >> 2],
|
|
Ro = q[(a + 20) >> 2],
|
|
So = q[(a + 16) >> 2],
|
|
To = q[((q[(a + 4) >> 2] << 2) + Po) >> 2],
|
|
Uo = q[((q[(a + 8) >> 2] << 2) + Po) >> 2],
|
|
a = 0;
|
|
(Vo = u[(((Ln = 1 | a) << 2) + So) >> 2]),
|
|
(Mn = (s[((a << 1) + Ro) >> 1] << 3) & 262136),
|
|
(Ko = u[(Wo = ((4 | Mn) + To) | 0) >> 2]),
|
|
(Ln = (s[((Ln << 1) + Ro) >> 1] << 3) & 262136),
|
|
(Lo = u[(Xo = ((4 | Ln) + Uo) | 0) >> 2]),
|
|
(Mo = u[(Mn = (Mn + To) | 0) >> 2]),
|
|
(Yo = u[((a << 2) + So) >> 2]),
|
|
(No = u[(Ln = (Ln + Uo) | 0) >> 2]),
|
|
(u[Mn >> 2] = Mo + x(On * x(Yo * x(No - Mo)))),
|
|
(u[Wo >> 2] = Ko + x(On * x(Yo * x(Lo - Ko)))),
|
|
(u[Ln >> 2] = No + x(On * x(Vo * x(Mo - No)))),
|
|
(u[Xo >> 2] = Lo + x(On * x(Vo * x(Ko - Lo)))),
|
|
(0 | (a = (a + 2) | 0)) < (0 | Qo);
|
|
|
|
);
|
|
if (!((0 | (Nn = (Nn + 1) | 0)) < (0 | Oo))) break;
|
|
}
|
|
})(a),
|
|
n[q[1810]](a),
|
|
(function(a) {
|
|
var Rc,
|
|
Sc,
|
|
Uc,
|
|
Vc,
|
|
Gc = 0,
|
|
Ic = 0,
|
|
Jc = 0,
|
|
Kc = 0,
|
|
Lc = 0,
|
|
Mc = 0,
|
|
Nc = 0,
|
|
Oc = 0,
|
|
Pc = 0,
|
|
Qc = 0,
|
|
Tc = 0;
|
|
if (!((0 | (Rc = q[(a + 480) >> 2])) < 1)) {
|
|
for (
|
|
Kc = ((Sc = q[(a + 484) >> 2]) + w(Rc, 28)) | 0,
|
|
Nc = q[(a + 424) >> 2],
|
|
Oc = q[(a + 40) >> 2],
|
|
Lc = q[(a + 44) >> 2],
|
|
Tc = q[(a + 440) >> 2],
|
|
Gc = Sc;;
|
|
|
|
) {
|
|
if (1 <= (0 | (Mc = q[(Gc + 4) >> 2])))
|
|
for (
|
|
Qc = (Gc + 20) | 0, Pc = q[(Gc + 12) >> 2], Ic = 0;
|
|
(Uc =
|
|
q[(4 + (Jc = (Pc + (Ic << 4)) | 0)) >> 2] << 2),
|
|
(Jc = 1 == q[(Vc = Jc) >> 2]),
|
|
(q[(Vc + 12) >> 2] =
|
|
q[
|
|
(q[((Jc ? Oc : Nc) + Uc) >> 2] ?
|
|
((Jc ? Lc : Tc) + Uc) | 0 :
|
|
Qc) >> 2
|
|
]),
|
|
(0 | (Ic = (Ic + 1) | 0)) < (0 | Mc);
|
|
|
|
);
|
|
if (!((Gc = (Gc + 28) | 0) >>> 0 < Kc >>> 0)) break;
|
|
}
|
|
if (!((0 | Rc) < 1))
|
|
for (Tc = q[(a + 436) >> 2], Oc = 0;;) {
|
|
if (
|
|
((Kc = (w(Oc, 28) + Sc) | 0), !(q[((Nc = Kc) + 24) >> 2] < 1))
|
|
) {
|
|
for (
|
|
Jc = q[(a + 488) >> 2], Ic = 0;
|
|
(q[(Jc + (Ic << 2)) >> 2] = -1),
|
|
(0 | (Ic = (Ic + 1) | 0)) <
|
|
(0 | (Gc = q[(Nc + 24) >> 2]));
|
|
|
|
);
|
|
if (!((0 | Gc) < 1))
|
|
for (
|
|
Gc = q[(a + 496) >> 2], Ic = 0;
|
|
(q[(Gc + (Ic << 2)) >> 2] = -1),
|
|
(0 | (Ic = (Ic + 1) | 0)) < q[(Nc + 24) >> 2];
|
|
|
|
);
|
|
}
|
|
if (!(q[(Kc + 4) >> 2] < 1)) {
|
|
for (
|
|
Lc = q[(a + 492) >> 2], Ic = 0;
|
|
(q[(Lc + (Ic << 2)) >> 2] = -1),
|
|
(0 | (Ic = (Ic + 1) | 0)) <
|
|
(0 | (Gc = q[(Kc + 4) >> 2]));
|
|
|
|
);
|
|
if (!((0 | Gc) < 1))
|
|
for (
|
|
Mc = q[(Kc + 12) >> 2],
|
|
Qc = q[(a + 496) >> 2],
|
|
Ic = 0;
|
|
(Pc =
|
|
(q[(12 + ((Mc + (Ic << 4)) | 0)) >> 2] -
|
|
q[(Kc + 20) >> 2]) <<
|
|
2),
|
|
(Gc = -1 ==
|
|
(0 | (Gc = q[(Jc = (Pc + Qc) | 0) >> 2])) ?
|
|
(Pc + q[(a + 488) >> 2]) | 0 :
|
|
(Lc + (Gc << 2)) | 0),
|
|
(q[Gc >> 2] = Ic),
|
|
(0 | (Ic = ((q[Jc >> 2] = Ic) + 1) | 0)) <
|
|
q[(Kc + 4) >> 2];
|
|
|
|
);
|
|
}
|
|
if (1 <= (0 | (Gc = q[(Nc + 24) >> 2])))
|
|
for (
|
|
Lc = q[(Kc + 8) >> 2],
|
|
Qc = q[(a + 488) >> 2],
|
|
Mc = 0;;
|
|
|
|
) {
|
|
if (-1 != (0 | (Ic = q[(Qc + (Mc << 2)) >> 2]))) {
|
|
for (
|
|
Pc = q[(a + 492) >> 2],
|
|
Jc = q[(Kc + 12) >> 2];
|
|
(Lc =
|
|
((Gc =
|
|
1 == q[(Gc = (Jc + (Ic << 4)) | 0) >> 2] ?
|
|
((Gc =
|
|
(w(q[(Gc + 8) >> 2], 28) + Sc) | 0),
|
|
(q[(Gc + 8) >> 2] = Lc),
|
|
q[Gc >> 2]) :
|
|
((q[
|
|
(Tc + (q[(Gc + 4) >> 2] << 2)) >> 2
|
|
] = Lc),
|
|
1)) +
|
|
Lc) |
|
|
0),
|
|
(0 | Ic) <
|
|
(0 | (Gc = q[(Pc + (Ic << 2)) >> 2])) &&
|
|
-1 != (0 | (Ic = Gc));
|
|
|
|
);
|
|
Gc = q[(Nc + 24) >> 2];
|
|
}
|
|
if (!((0 | (Mc = (Mc + 1) | 0)) < (0 | Gc)))
|
|
break;
|
|
}
|
|
if ((0 | Rc) == (0 | (Oc = (Oc + 1) | 0))) break;
|
|
}
|
|
}
|
|
})(a),
|
|
(function(a) {
|
|
var Mg = 0,
|
|
Ng = 0,
|
|
Og = 0,
|
|
Pg = 0,
|
|
Rg = 0,
|
|
Sg = x(0),
|
|
Tg = 0,
|
|
Ug = 0,
|
|
Qg = q[(a + 332) >> 2];
|
|
if (q[(a + 644) >> 2]) {
|
|
if (!(((q[(a + 428) >> 2] = 0) | Qg) < 1))
|
|
for (;
|
|
(Mg = 126),
|
|
(Tg = (q[(a + 432) >> 2] + Og) | 0), !q[((Ng = Og << 2) + q[(a + 424) >> 2]) >> 2] |
|
|
(u[(Ng + q[(a + 448) >> 2]) >> 2] == x(0)) ||
|
|
(Mg = 127),
|
|
(o[0 | Tg] = Mg),
|
|
(0 | Qg) != (0 | (Og = (Og + 1) | 0));
|
|
|
|
);
|
|
} else if (q[(a + 428) >> 2]) {
|
|
if (
|
|
((Mg = r[(q[a >> 2] + 4) | 0]), !(((q[(a + 428) >> 2] = 0) | Qg) < 1))
|
|
)
|
|
if (4 <= Mg >>> 0)
|
|
for (;
|
|
(Sg = u[((Mg = Og << 2) + q[(a + 448) >> 2]) >> 2]),
|
|
(Pg = q[(Mg + q[(a + 424) >> 2]) >> 2]),
|
|
(Ng = (Sg != x(0)) & (0 != (0 | Pg))),
|
|
(Tg = (q[(a + 432) >> 2] + Og) | 0),
|
|
(Ng = (0 | Ng) == (1 & o[0 | Tg]) ? Ng : 2 | Ng),
|
|
(Ng =
|
|
Sg != u[(Mg + q[(a + 468) >> 2]) >> 2] ?
|
|
4 | Ng :
|
|
Ng),
|
|
(Ng =
|
|
q[(Mg + q[(a + 440) >> 2]) >> 2] ==
|
|
q[(Mg + q[(a + 464) >> 2]) >> 2] ?
|
|
Ng :
|
|
8 | Ng),
|
|
(Mg =
|
|
q[(Mg + q[(a + 436) >> 2]) >> 2] ==
|
|
q[(Mg + q[(a + 460) >> 2]) >> 2] ?
|
|
Ng :
|
|
16 | Ng),
|
|
(Mg = Pg ? 32 | Mg : Mg),
|
|
(Pg = ((Ng = Ug << 2) + q[(a + 452) >> 2]) | 0),
|
|
(Rg = (Ng + q[(a + 472) >> 2]) | 0),
|
|
((u[Pg >> 2] != u[Rg >> 2]) |
|
|
(u[(Pg + 4) >> 2] != u[(Rg + 4) >> 2]) |
|
|
((u[(Pg + 8) >> 2] != u[(Rg + 8) >> 2]) |
|
|
(u[(Pg + 12) >> 2] != u[(Rg + 12) >> 2])) ||
|
|
((Pg = (Ng + q[(a + 456) >> 2]) | 0),
|
|
(Ng = (Ng + q[(a + 476) >> 2]) | 0),
|
|
(u[Pg >> 2] != u[Ng >> 2]) |
|
|
(u[(Pg + 4) >> 2] != u[(Ng + 4) >> 2]) |
|
|
(u[(Pg + 8) >> 2] != u[(Ng + 8) >> 2])) ||
|
|
u[(Pg + 12) >> 2] != u[(Ng + 12) >> 2]) &&
|
|
(Mg |= 64),
|
|
(o[0 | Tg] = Mg),
|
|
(Ug = (Ug + 4) | 0),
|
|
(0 | Qg) != (0 | (Og = (Og + 1) | 0));
|
|
|
|
);
|
|
else
|
|
for (;
|
|
(Sg = u[((Mg = Og << 2) + q[(a + 448) >> 2]) >> 2]),
|
|
(Pg = q[(Mg + q[(a + 424) >> 2]) >> 2]),
|
|
(Ng = (Sg != x(0)) & (0 != (0 | Pg))),
|
|
(Rg = (q[(a + 432) >> 2] + Og) | 0),
|
|
(Ng = (0 | Ng) == (1 & o[0 | Rg]) ? Ng : 2 | Ng),
|
|
(Ng =
|
|
Sg != u[(Mg + q[(a + 468) >> 2]) >> 2] ?
|
|
4 | Ng :
|
|
Ng),
|
|
(Ng =
|
|
q[(Mg + q[(a + 440) >> 2]) >> 2] ==
|
|
q[(Mg + q[(a + 464) >> 2]) >> 2] ?
|
|
Ng :
|
|
8 | Ng),
|
|
(Mg =
|
|
q[(Mg + q[(a + 436) >> 2]) >> 2] ==
|
|
q[(Mg + q[(a + 460) >> 2]) >> 2] ?
|
|
Ng :
|
|
16 | Ng),
|
|
(o[0 | Rg] = Pg ? 32 | Mg : Mg),
|
|
(0 | Qg) != (0 | (Og = (Og + 1) | 0));
|
|
|
|
);
|
|
} else if (!((0 | Qg) < 1))
|
|
for (; !q[((Mg = Og << 2) + q[(a + 424) >> 2]) >> 2] |
|
|
(u[(Mg + q[(a + 448) >> 2]) >> 2] == x(0)) ?
|
|
((Mg = (q[(a + 432) >> 2] + Og) | 0),
|
|
(o[0 | Mg] = 254 & r[0 | Mg])) :
|
|
((Mg = (q[(a + 432) >> 2] + Og) | 0),
|
|
(o[0 | Mg] = 1 | r[0 | Mg])),
|
|
(0 | Qg) != (0 | (Og = (Og + 1) | 0));
|
|
|
|
);
|
|
})(a),
|
|
(q[(a + 644) >> 2] = 0);
|
|
}
|
|
|
|
function va(a, Wa, Xa, Ya, Za, _a) {
|
|
var fb,
|
|
gb,
|
|
hb,
|
|
jb,
|
|
kb,
|
|
cb,
|
|
db,
|
|
$a = 0,
|
|
bb = 0,
|
|
eb = 0,
|
|
ib = 0;
|
|
if (((L = cb = (L - 32) | 0), 1 <= (0 | Wa)))
|
|
for (kb = (w(Wa, 12) + Xa) | 0;;) {
|
|
if (!((0 | ($a = q[(Xa + 4) >> 2])) < 1))
|
|
if (
|
|
((fb = ((Wa = q[(Xa + 8) >> 2]) + w($a, 48)) | 0),
|
|
($a = q[Xa >> 2] << 2),
|
|
1 <= (0 | (db = q[($a + _a) >> 2])))
|
|
)
|
|
for (
|
|
db <<= 1,
|
|
gb = q[(q[a >> 2] + 1052) >> 2],
|
|
hb = q[(Za + $a) >> 2];;
|
|
|
|
) {
|
|
b: if (($a = q[(Wa + 8) >> 2])) {
|
|
c: {
|
|
if ((bb = ($a + -1) | 0) >>> 0 <= 1) {
|
|
if (
|
|
(($a = ((q[(Wa + 4) >> 2] << 2) + Ya) | 0),
|
|
(ib =
|
|
((q[($a + (q[(Wa + 12) >> 2] << 2)) >> 2] <<
|
|
2) +
|
|
gb) |
|
|
0),
|
|
bb - 1)
|
|
)
|
|
break c;
|
|
for (
|
|
eb =
|
|
((q[($a + (q[(Wa + 16) >> 2] << 2)) >> 2] <<
|
|
2) +
|
|
gb) |
|
|
0,
|
|
$a = 0;
|
|
(u[(jb = ((bb = $a << 2) + hb) | 0) >> 2] =
|
|
u[jb >> 2] +
|
|
x(
|
|
u[(Wa + 44) >> 2] *
|
|
x(
|
|
x(
|
|
u[(bb + ib) >> 2] *
|
|
u[(Wa + 20) >> 2]
|
|
) +
|
|
x(
|
|
u[(bb + eb) >> 2] *
|
|
u[(Wa + 24) >> 2]
|
|
)
|
|
)
|
|
)),
|
|
(0 | db) != (0 | ($a = ($a + 1) | 0));
|
|
|
|
);
|
|
break b;
|
|
}
|
|
(q[cb >> 2] = $a),
|
|
Y(4, 1024, cb);
|
|
break b;
|
|
}
|
|
for (
|
|
$a = 0;
|
|
(u[(eb = ((bb = $a << 2) + hb) | 0) >> 2] =
|
|
u[eb >> 2] +
|
|
x(
|
|
u[(Wa + 44) >> 2] *
|
|
x(u[(bb + ib) >> 2] * u[(Wa + 20) >> 2])
|
|
)),
|
|
(0 | db) != (0 | ($a = ($a + 1) | 0));
|
|
|
|
);
|
|
}
|
|
if (!((Wa = (Wa + 48) | 0) >>> 0 < fb >>> 0)) break;
|
|
}
|
|
else
|
|
for (; 3 <= ($a = q[(Wa + 8) >> 2]) >>> 0 &&
|
|
((q[(16 + cb) >> 2] = $a),
|
|
Y(4, 1024, (16 + cb) | 0)),
|
|
(Wa = (Wa + 48) | 0) >>> 0 < fb >>> 0;
|
|
|
|
);
|
|
if (!((Xa = (Xa + 12) | 0) >>> 0 < kb >>> 0)) break;
|
|
}
|
|
L = (32 + cb) | 0;
|
|
}
|
|
|
|
function wa(a, Wa, Xa) {
|
|
var Ya;
|
|
(Wa |= 0), (Xa |= 0), (L = Ya = (L + -64) | 0);
|
|
a: {
|
|
if ((a |= 0))
|
|
if (Wa)
|
|
if (((Wa + 15) & -16) != (0 | Wa))
|
|
(q[(52 + Ya) >> 2] = 1522),
|
|
(q[(48 + Ya) >> 2] = 2361),
|
|
Y(4, 1294, (48 + Ya) | 0);
|
|
else {
|
|
if (
|
|
(Wa = (function(a, Il, Jl) {
|
|
var cm,
|
|
$l = 0,
|
|
am = 0,
|
|
bm = 0,
|
|
dm = 0,
|
|
em = 0,
|
|
fm = 0,
|
|
gm = 0,
|
|
hm = 0,
|
|
im = 0,
|
|
jm = 0,
|
|
km = 0,
|
|
lm = 0,
|
|
mm = 0,
|
|
nm = x(0),
|
|
om = 0,
|
|
pm = 0,
|
|
qm = 0,
|
|
rm = 0,
|
|
sm = 0;
|
|
if (
|
|
(ca((16 + (L = cm = (L - 576) | 0)) | 0, 0, 560),
|
|
Fa(a, (16 + cm) | 0, (12 + cm) | 0),
|
|
(dm = q[(12 + cm) >> 2]) >>> 0 <= Jl >>> 0)
|
|
) {
|
|
if (
|
|
(($l =
|
|
((am = ca(Il, 0, dm)) + q[(16 + cm) >> 2]) |
|
|
0),
|
|
(q[($l + 8) >> 2] = am + q[(20 + cm) >> 2]),
|
|
(q[($l + 40) >> 2] = am + q[(24 + cm) >> 2]),
|
|
(q[($l + 44) >> 2] = am + q[(28 + cm) >> 2]),
|
|
(q[($l + 48) >> 2] = am + q[(32 + cm) >> 2]),
|
|
(q[($l + 52) >> 2] = am + q[(36 + cm) >> 2]),
|
|
(q[($l + 16) >> 2] = am + q[(40 + cm) >> 2]),
|
|
(q[($l + 24) >> 2] = am + q[(44 + cm) >> 2]),
|
|
(q[($l + 28) >> 2] = am + q[(48 + cm) >> 2]),
|
|
(q[($l + 32) >> 2] = am + q[(52 + cm) >> 2]),
|
|
(q[($l + 36) >> 2] = am + q[(56 + cm) >> 2]),
|
|
(Il = q[(a + 704) >> 2]),
|
|
(q[($l + 308) >> 2] = am + q[(60 + cm) >> 2]),
|
|
(q[($l + 312) >> 2] = am + q[(64 + cm) >> 2]),
|
|
(q[($l + 316) >> 2] = am + q[(68 + cm) >> 2]),
|
|
(q[($l + 320) >> 2] = am + q[(72 + cm) >> 2]),
|
|
(q[($l + 324) >> 2] = am + q[(76 + cm) >> 2]),
|
|
(q[($l + 328) >> 2] = am + q[(80 + cm) >> 2]),
|
|
(q[($l + 60) >> 2] = am + q[(84 + cm) >> 2]),
|
|
(q[($l + 144) >> 2] = am + q[(88 + cm) >> 2]),
|
|
(q[($l + 148) >> 2] = am + q[(92 + cm) >> 2]),
|
|
(Jl = (am + q[(96 + cm) >> 2]) | 0),
|
|
(q[($l + 152) >> 2] = Jl), !((0 | (dm = q[(Il + 8) >> 2])) < 1) &&
|
|
((Il = (am + q[(100 + cm) >> 2]) | 0),
|
|
(q[Jl >> 2] = Il),
|
|
1 != (0 | dm)))
|
|
)
|
|
for (
|
|
Jl = 1;
|
|
(Il =
|
|
(((15 +
|
|
(q[
|
|
(q[(a + 796) >> 2] + (bm << 2)) >> 2
|
|
] <<
|
|
3)) &
|
|
-16) +
|
|
Il) |
|
|
0),
|
|
(q[(q[($l + 152) >> 2] + (Jl << 2)) >> 2] =
|
|
Il),
|
|
(0 | dm) !=
|
|
(0 | (Jl = ((bm = Jl) + 1) | 0));
|
|
|
|
);
|
|
if (
|
|
((q[($l + 156) >> 2] = am + q[(104 + cm) >> 2]),
|
|
(q[($l + 160) >> 2] = am + q[(108 + cm) >> 2]),
|
|
(q[($l + 68) >> 2] = am + q[(112 + cm) >> 2]),
|
|
(q[($l + 76) >> 2] = am + q[(116 + cm) >> 2]),
|
|
(q[($l + 80) >> 2] = am + q[(120 + cm) >> 2]),
|
|
(q[($l + 84) >> 2] = am + q[(124 + cm) >> 2]),
|
|
(q[($l + 88) >> 2] = am + q[(128 + cm) >> 2]),
|
|
(q[($l + 92) >> 2] = am + q[(132 + cm) >> 2]),
|
|
(q[($l + 96) >> 2] = am + q[(136 + cm) >> 2]),
|
|
(q[($l + 100) >> 2] = am + q[(140 + cm) >> 2]),
|
|
(q[($l + 104) >> 2] = am + q[(144 + cm) >> 2]),
|
|
(q[($l + 108) >> 2] = am + q[(148 + cm) >> 2]),
|
|
(q[($l + 112) >> 2] = am + q[(152 + cm) >> 2]),
|
|
(q[($l + 116) >> 2] = am + q[(156 + cm) >> 2]),
|
|
(q[($l + 120) >> 2] = am + q[(160 + cm) >> 2]),
|
|
(q[($l + 124) >> 2] = am + q[(164 + cm) >> 2]),
|
|
(q[($l + 128) >> 2] = am + q[(168 + cm) >> 2]),
|
|
(q[($l + 132) >> 2] = am + q[(172 + cm) >> 2]),
|
|
(q[($l + 136) >> 2] = am + q[(176 + cm) >> 2]),
|
|
(q[($l + 140) >> 2] = am + q[(180 + cm) >> 2]),
|
|
(q[($l + 168) >> 2] = am + q[(184 + cm) >> 2]),
|
|
(q[($l + 264) >> 2] = am + q[(188 + cm) >> 2]),
|
|
(q[($l + 268) >> 2] = am + q[(192 + cm) >> 2]),
|
|
(q[($l + 272) >> 2] = am + q[(196 + cm) >> 2]),
|
|
(q[($l + 276) >> 2] = am + q[(200 + cm) >> 2]),
|
|
(q[($l + 280) >> 2] = am + q[(204 + cm) >> 2]),
|
|
(q[($l + 284) >> 2] = am + q[(208 + cm) >> 2]),
|
|
(q[($l + 288) >> 2] = am + q[(212 + cm) >> 2]),
|
|
(q[($l + 292) >> 2] = am + q[(216 + cm) >> 2]),
|
|
(q[($l + 296) >> 2] = am + q[(220 + cm) >> 2]),
|
|
(q[($l + 300) >> 2] = am + q[(224 + cm) >> 2]),
|
|
(q[($l + 176) >> 2] = am + q[(228 + cm) >> 2]),
|
|
(q[($l + 184) >> 2] = am + q[(232 + cm) >> 2]),
|
|
(q[($l + 188) >> 2] = am + q[(236 + cm) >> 2]),
|
|
(q[($l + 192) >> 2] = am + q[(240 + cm) >> 2]),
|
|
(q[($l + 196) >> 2] = am + q[(244 + cm) >> 2]),
|
|
(q[($l + 200) >> 2] = am + q[(248 + cm) >> 2]),
|
|
(q[($l + 204) >> 2] = am + q[(252 + cm) >> 2]),
|
|
(q[($l + 208) >> 2] = am + q[(256 + cm) >> 2]),
|
|
(q[($l + 212) >> 2] = am + q[(260 + cm) >> 2]),
|
|
(q[($l + 216) >> 2] = am + q[(264 + cm) >> 2]),
|
|
(q[($l + 220) >> 2] = am + q[(268 + cm) >> 2]),
|
|
(q[($l + 224) >> 2] = am + q[(272 + cm) >> 2]),
|
|
(q[($l + 228) >> 2] = am + q[(276 + cm) >> 2]),
|
|
(q[($l + 232) >> 2] = am + q[(280 + cm) >> 2]),
|
|
(q[($l + 236) >> 2] = am + q[(284 + cm) >> 2]),
|
|
(q[($l + 240) >> 2] = am + q[(288 + cm) >> 2]),
|
|
(q[($l + 244) >> 2] = am + q[(292 + cm) >> 2]),
|
|
(q[($l + 248) >> 2] = am + q[(296 + cm) >> 2]),
|
|
(q[($l + 252) >> 2] = am + q[(300 + cm) >> 2]),
|
|
(q[($l + 256) >> 2] = am + q[(304 + cm) >> 2]),
|
|
(q[($l + 260) >> 2] = am + q[(308 + cm) >> 2]),
|
|
(Il = q[(a + 704) >> 2]),
|
|
(q[($l + 336) >> 2] = am + q[(312 + cm) >> 2]),
|
|
(q[($l + 424) >> 2] = am + q[(316 + cm) >> 2]),
|
|
(q[($l + 432) >> 2] = am + q[(320 + cm) >> 2]),
|
|
(q[($l + 436) >> 2] = am + q[(324 + cm) >> 2]),
|
|
(q[($l + 440) >> 2] = am + q[(328 + cm) >> 2]),
|
|
(Jl = (am + q[(332 + cm) >> 2]) | 0),
|
|
(q[($l + 444) >> 2] = Jl), !((0 | (dm = q[(Il + 16) >> 2])) < 1) &&
|
|
((bm = (am + q[(336 + cm) >> 2]) | 0),
|
|
(q[Jl >> 2] = bm),
|
|
(Jl = 1) != (0 | dm)))
|
|
)
|
|
for (
|
|
Il = 0;
|
|
(bm =
|
|
(((15 +
|
|
(q[
|
|
(q[(a + 892) >> 2] + (Il << 2)) >> 2
|
|
] <<
|
|
3)) &
|
|
-16) +
|
|
bm) |
|
|
0),
|
|
(q[(q[($l + 444) >> 2] + (Jl << 2)) >> 2] =
|
|
bm),
|
|
(0 | dm) !=
|
|
(0 | (Jl = ((Il = Jl) + 1) | 0));
|
|
|
|
);
|
|
if (
|
|
((q[($l + 448) >> 2] = am + q[(340 + cm) >> 2]),
|
|
(q[($l + 452) >> 2] = am + q[(344 + cm) >> 2]),
|
|
(q[($l + 456) >> 2] = am + q[(348 + cm) >> 2]),
|
|
(q[($l + 460) >> 2] = am + q[(352 + cm) >> 2]),
|
|
(q[($l + 464) >> 2] = am + q[(356 + cm) >> 2]),
|
|
(q[($l + 468) >> 2] = am + q[(360 + cm) >> 2]),
|
|
(q[($l + 472) >> 2] = am + q[(364 + cm) >> 2]),
|
|
(q[($l + 476) >> 2] = am + q[(368 + cm) >> 2]),
|
|
(q[($l + 344) >> 2] = am + q[(372 + cm) >> 2]),
|
|
(q[($l + 352) >> 2] = am + q[(376 + cm) >> 2]),
|
|
(q[($l + 356) >> 2] = am + q[(380 + cm) >> 2]),
|
|
(q[($l + 360) >> 2] = am + q[(384 + cm) >> 2]),
|
|
(q[($l + 364) >> 2] = am + q[(388 + cm) >> 2]),
|
|
(q[($l + 368) >> 2] = am + q[(392 + cm) >> 2]),
|
|
(q[($l + 372) >> 2] = am + q[(396 + cm) >> 2]),
|
|
(q[($l + 376) >> 2] = am + q[(400 + cm) >> 2]),
|
|
(q[($l + 380) >> 2] = am + q[(404 + cm) >> 2]),
|
|
(q[($l + 384) >> 2] = am + q[(408 + cm) >> 2]),
|
|
(q[($l + 388) >> 2] = am + q[(412 + cm) >> 2]),
|
|
(q[($l + 392) >> 2] = am + q[(416 + cm) >> 2]),
|
|
(q[($l + 396) >> 2] = am + q[(420 + cm) >> 2]),
|
|
(q[($l + 400) >> 2] = am + q[(424 + cm) >> 2]),
|
|
(q[($l + 404) >> 2] = am + q[(428 + cm) >> 2]),
|
|
(q[($l + 408) >> 2] = am + q[(432 + cm) >> 2]),
|
|
(q[($l + 412) >> 2] = am + q[(436 + cm) >> 2]),
|
|
(q[($l + 416) >> 2] = am + q[(440 + cm) >> 2]),
|
|
(q[($l + 420) >> 2] = am + q[(444 + cm) >> 2]),
|
|
(Il = q[(448 + cm) >> 2]),
|
|
(Jl = q[(452 + cm) >> 2]),
|
|
(q[($l + 552) >> 2] = am + q[(456 + cm) >> 2]),
|
|
(q[($l + 548) >> 2] = Jl + am),
|
|
(q[($l + 544) >> 2] = Il + am),
|
|
(q[($l + 560) >> 2] = am + q[(460 + cm) >> 2]),
|
|
(Il = q[(a + 704) >> 2]),
|
|
(gm = (am + q[(464 + cm) >> 2]) | 0),
|
|
(q[($l + 568) >> 2] = gm),
|
|
1 <= (0 | (fm = q[(Il + 48) >> 2])))
|
|
)
|
|
for (
|
|
bm = (am + q[(468 + cm) >> 2]) | 0,
|
|
Il = (am + q[(472 + cm) >> 2]) | 0,
|
|
em = (am + q[(476 + cm) >> 2]) | 0,
|
|
hm = q[(a + 1072) >> 2],
|
|
Jl = 0;
|
|
(dm = (gm + w(Jl, 36)) | 0),
|
|
(q[(dm + 20) >> 2] = em),
|
|
(q[(dm + 16) >> 2] = Il),
|
|
(q[dm >> 2] = bm),
|
|
(bm =
|
|
(((dm = q[(hm + (Jl << 2)) >> 2]) << 2) +
|
|
bm) |
|
|
0),
|
|
(em = ((dm = (1 << dm) << 2) + em) | 0),
|
|
(Il = (Il + dm) | 0),
|
|
(0 | fm) != (0 | (Jl = (Jl + 1) | 0));
|
|
|
|
);
|
|
if (
|
|
((Il = q[(a + 704) >> 2]),
|
|
(dm = (am + q[(516 + cm) >> 2]) | 0),
|
|
(q[($l + 484) >> 2] = dm),
|
|
1 <= (0 | (Il = q[(Il + 72) >> 2])))
|
|
)
|
|
for (
|
|
bm = (am + q[(520 + cm) >> 2]) | 0,
|
|
em = q[(a + 1212) >> 2],
|
|
Jl = 0;
|
|
(q[(12 + ((dm + w(Jl, 28)) | 0)) >> 2] = bm),
|
|
(bm =
|
|
((q[(em + (Jl << 2)) >> 2] << 4) + bm) |
|
|
0),
|
|
(0 | Il) != (0 | (Jl = (Jl + 1) | 0));
|
|
|
|
);
|
|
(q[($l + 488) >> 2] = am + q[(524 + cm) >> 2]),
|
|
(q[($l + 492) >> 2] = am + q[(528 + cm) >> 2]),
|
|
(q[($l + 496) >> 2] = am + q[(532 + cm) >> 2]),
|
|
(q[($l + 504) >> 2] = am + q[(536 + cm) >> 2]),
|
|
(q[($l + 536) >> 2] = am + q[(540 + cm) >> 2]),
|
|
(q[($l + 512) >> 2] = am + q[(544 + cm) >> 2]),
|
|
(q[($l + 520) >> 2] = am + q[(548 + cm) >> 2]),
|
|
(q[($l + 524) >> 2] = am + q[(552 + cm) >> 2]),
|
|
(q[($l + 528) >> 2] = am + q[(556 + cm) >> 2]),
|
|
(q[($l + 532) >> 2] = am + q[(560 + cm) >> 2]);
|
|
c: {
|
|
if (4 <= (fm = r[(a + 4) | 0]) >>> 0) {
|
|
if (
|
|
((q[($l + 576) >> 2] =
|
|
am + q[(480 + cm) >> 2]),
|
|
(q[($l + 584) >> 2] =
|
|
am + q[(484 + cm) >> 2]),
|
|
(Il = q[(a + 704) >> 2]),
|
|
(Jl = q[(492 + cm) >> 2]),
|
|
(dm = (am + q[(488 + cm) >> 2]) | 0),
|
|
(q[($l + 592) >> 2] = dm),
|
|
1 <= (0 | (Il = q[(Il + 104) >> 2])))
|
|
)
|
|
for (
|
|
bm = (Jl + am) | 0,
|
|
em = q[(a + 1104) >> 2],
|
|
Jl = 0;
|
|
(q[(40 + ((dm + w(Jl, 48)) | 0)) >> 2] =
|
|
bm),
|
|
(bm =
|
|
((q[(em + (Jl << 2)) >> 2] << 2) +
|
|
bm) |
|
|
0),
|
|
(0 | Il) != (0 | (Jl = (Jl + 1) | 0));
|
|
|
|
);
|
|
(q[($l + 608) >> 2] =
|
|
am + q[(500 + cm) >> 2]),
|
|
(q[($l + 624) >> 2] =
|
|
am + q[(508 + cm) >> 2]);
|
|
} else {
|
|
if (
|
|
((Il = q[(572 + cm) >> 2]),
|
|
(Jl = q[(568 + cm) >> 2]),
|
|
(q[($l + 636) >> 2] =
|
|
am + q[(564 + cm) >> 2]),
|
|
(q[($l + 640) >> 2] = Jl + am),
|
|
q[(q[(a + 704) >> 2] + 20) >> 2] < 1)
|
|
)
|
|
break c;
|
|
for (dm = (Il + am) | 0, gm = 0;;) {
|
|
e: {
|
|
if (
|
|
(0 |
|
|
(bm =
|
|
q[
|
|
((Il = gm << 2) +
|
|
q[(a + 952) >> 2]) >>
|
|
2
|
|
])) <=
|
|
0
|
|
)
|
|
Il = (Il + q[($l + 636) >> 2]) | 0;
|
|
else {
|
|
for (
|
|
em =
|
|
(bm +
|
|
(Jl =
|
|
q[
|
|
(Il + q[(a + 948) >> 2]) >> 2
|
|
])) |
|
|
0,
|
|
hm = q[(a + 1060) >> 2],
|
|
bm = 0;
|
|
(bm =
|
|
(q[(hm + (Jl << 2)) >> 2] + bm) |
|
|
0),
|
|
(0 | (Jl = (Jl + 1) | 0)) <
|
|
(0 | em);
|
|
|
|
);
|
|
if (
|
|
((Il = (Il + q[($l + 636) >> 2]) | 0),
|
|
(Jl = dm),
|
|
bm)
|
|
)
|
|
break e;
|
|
}
|
|
Jl = bm = 0;
|
|
}
|
|
if (
|
|
((q[Il >> 2] = Jl),
|
|
(dm = ((bm << 2) + dm) | 0), !(
|
|
(0 | (gm = (gm + 1) | 0)) <
|
|
q[(q[(a + 704) >> 2] + 20) >> 2]
|
|
))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
fm >>> 0 < 5 ||
|
|
((q[($l + 600) >> 2] =
|
|
am + q[(496 + cm) >> 2]),
|
|
(q[($l + 616) >> 2] =
|
|
am + q[(504 + cm) >> 2]),
|
|
(q[($l + 632) >> 2] =
|
|
am + q[(512 + cm) >> 2]));
|
|
}
|
|
(q[($l + 644) >> 2] = 1),
|
|
(q[$l >> 2] = a),
|
|
(q[($l + 648) >> 2] =
|
|
1 & o[(q[(a + 708) >> 2] + 20) | 0]),
|
|
(am = q[(a + 704) >> 2]),
|
|
(gm = q[(am + 20) >> 2]);
|
|
g: if (!((0 | (q[($l + 540) >> 2] = gm)) < 1)) {
|
|
if (
|
|
((Il = (gm + -1) | 0),
|
|
(hm = q[(a + 952) >> 2]),
|
|
(im = q[(a + 940) >> 2]),
|
|
(jm = q[(a + 932) >> 2]),
|
|
(km = q[(a + 936) >> 2]),
|
|
(lm = q[(a + 924) >> 2]),
|
|
(mm = q[(a + 928) >> 2]),
|
|
(om = q[($l + 552) >> 2]),
|
|
(qm = q[($l + 544) >> 2]),
|
|
fm >>> 0 < 4)
|
|
)
|
|
for (;;)
|
|
if (
|
|
((Jl = (qm + w(Il, 52)) | 0),
|
|
(bm =
|
|
((dm = Il << 2) + mm) |
|
|
(q[Jl >> 2] = 0)),
|
|
(q[(Jl + 4) >> 2] = q[bm >> 2]),
|
|
(q[(Jl + 8) >> 2] =
|
|
q[(em = (dm + lm) | 0) >> 2]),
|
|
(u[(Jl + 12) >> 2] =
|
|
u[em >> 2] - u[bm >> 2]),
|
|
(q[(Jl + 16) >> 2] = q[(dm + km) >> 2]),
|
|
(q[(Jl + 44) >> 2] =
|
|
q[(bm = (dm + jm) | 0) >> 2]),
|
|
(nm = Aa(x(q[(dm + im) >> 2]))),
|
|
(u[(Jl + 20) >> 2] = nm),
|
|
(u[(Jl + 24) >> 2] = nm * x(1.5)),
|
|
(pm = q[(dm + hm) >> 2]),
|
|
(em = 0),
|
|
(em = (q[(Jl + 32) >> 2] = pm) ?
|
|
(q[($l + 560) >> 2] +
|
|
w(
|
|
q[(dm + q[(a + 948) >> 2]) >> 2],
|
|
28
|
|
)) |
|
|
0 :
|
|
em),
|
|
(q[(Jl + 48) >> 2] = 1),
|
|
(q[(Jl + 28) >> 2] = em),
|
|
(q[(dm + om) >> 2] = q[bm >> 2]),
|
|
(Jl = 0 < (0 | Il)),
|
|
(Il = (Il + -1) | 0), !Jl)
|
|
)
|
|
break g;
|
|
for (
|
|
pm = q[(a + 960) >> 2],
|
|
sm = q[(a + 944) >> 2];
|
|
(Jl = (qm + w(Il, 52)) | 0),
|
|
(q[Jl >> 2] =
|
|
q[((bm = Il << 2) + sm) >> 2]),
|
|
(q[(Jl + 4) >> 2] =
|
|
q[(dm = (bm + mm) | 0) >> 2]),
|
|
(q[(Jl + 8) >> 2] =
|
|
q[(em = (bm + lm) | 0) >> 2]),
|
|
(u[(Jl + 12) >> 2] =
|
|
u[em >> 2] - u[dm >> 2]),
|
|
(q[(Jl + 16) >> 2] = q[(bm + km) >> 2]),
|
|
(q[(Jl + 44) >> 2] =
|
|
q[(rm = (bm + jm) | 0) >> 2]),
|
|
(nm = Aa(x(q[(bm + im) >> 2]))),
|
|
(u[(Jl + 20) >> 2] = nm),
|
|
(u[(Jl + 24) >> 2] = nm * x(1.5)),
|
|
(em = q[(bm + hm) >> 2]),
|
|
(q[(Jl + 32) >> 2] = em),
|
|
(q[(Jl + 28) >> 2] = em ?
|
|
(q[($l + 560) >> 2] +
|
|
w(
|
|
q[(bm + q[(a + 948) >> 2]) >> 2],
|
|
28
|
|
)) |
|
|
0 :
|
|
0),
|
|
(dm = q[(bm + pm) >> 2]),
|
|
(dm = (q[(Jl + 40) >> 2] = dm) ?
|
|
(q[($l + 584) >> 2] +
|
|
w(
|
|
q[(bm + q[(a + 956) >> 2]) >> 2],
|
|
28
|
|
)) |
|
|
0 :
|
|
0),
|
|
(q[(Jl + 48) >> 2] = 1),
|
|
(q[(Jl + 36) >> 2] = dm),
|
|
(q[(bm + om) >> 2] = q[rm >> 2]),
|
|
(Jl = 0 < (0 | Il)),
|
|
(Il = (Il + -1) | 0),
|
|
Jl;
|
|
|
|
);
|
|
}
|
|
if (
|
|
(4 <= fm >>> 0 ?
|
|
((q[($l + 548) >> 2] = q[(a + 944) >> 2]),
|
|
(dm = a)) :
|
|
(ca(q[($l + 548) >> 2], 0, gm << 2),
|
|
(dm = q[$l >> 2]),
|
|
(am = q[(dm + 704) >> 2])),
|
|
(bm = q[(am + 52) >> 2]),
|
|
1 <= (0 | (q[($l + 556) >> 2] = bm)))
|
|
)
|
|
for (
|
|
Jl = q[(dm + 1056) >> 2],
|
|
em = q[(dm + 1192) >> 2],
|
|
gm = q[(dm + 1060) >> 2],
|
|
fm = q[($l + 560) >> 2];
|
|
(Il = (fm + w((bm = (bm + -1) | 0), 28)) | 0),
|
|
(q[Il >> 2] =
|
|
q[((hm = bm << 2) + gm) >> 2]),
|
|
(hm = q[(Jl + hm) >> 2]),
|
|
(q[(Il + 24) >> 2] = 1),
|
|
(q[(Il + 16) >> 2] = 0),
|
|
(q[(Il + 20) >> 2] = 1),
|
|
(q[(Il + 8) >> 2] = 0),
|
|
(q[(Il + 12) >> 2] = 0),
|
|
(q[(Il + 4) >> 2] = em + (hm << 2)),
|
|
0 < (0 | bm);
|
|
|
|
);
|
|
if (
|
|
((bm = q[(am + 48) >> 2]),
|
|
1 <= (0 | (q[($l + 564) >> 2] = bm)))
|
|
) {
|
|
for (;;) {
|
|
if (
|
|
((Il =
|
|
(q[($l + 568) >> 2] +
|
|
w((bm = (bm + -1) | 0), 36)) |
|
|
0),
|
|
(em =
|
|
q[
|
|
((am = bm << 2) +
|
|
q[(dm + 1072) >> 2]) >>
|
|
2
|
|
]),
|
|
1 <= (0 | (q[(Il + 4) >> 2] = em)))
|
|
)
|
|
for (
|
|
Jl = 0;
|
|
(q[(q[Il >> 2] + (Jl << 2)) >> 2] =
|
|
q[($l + 560) >> 2] +
|
|
w(
|
|
q[
|
|
(q[(dm + 1064) >> 2] +
|
|
((q[
|
|
(am + q[(dm + 1068) >> 2]) >> 2
|
|
] +
|
|
Jl) <<
|
|
2)) >>
|
|
2
|
|
],
|
|
28
|
|
)),
|
|
(0 | em) != (0 | (Jl = (Jl + 1) | 0));
|
|
|
|
);
|
|
if (
|
|
((q[(Il + 24) >> 2] = 1),
|
|
(q[(Il + 28) >> 2] = 1),
|
|
(q[(Il + 8) >> 2] = 1 << em), !(0 < (0 | bm)))
|
|
)
|
|
break;
|
|
}
|
|
(dm = q[$l >> 2]), (am = q[(dm + 704) >> 2]);
|
|
}
|
|
if (
|
|
((Il = q[am >> 2]),
|
|
(0 | (q[($l + 4) >> 2] = Il)) < 1)
|
|
)
|
|
Jl = 0;
|
|
else {
|
|
for (
|
|
hm = q[(dm + 732) >> 2],
|
|
im = q[(dm + 736) >> 2],
|
|
jm = q[(dm + 740) >> 2],
|
|
em = q[(dm + 720) >> 2],
|
|
km = q[($l + 52) >> 2],
|
|
gm = q[($l + 568) >> 2],
|
|
lm = q[($l + 8) >> 2],
|
|
bm = Il;
|
|
(fm = (lm + w((bm = (bm + -1) | 0), 12)) | 0),
|
|
(q[fm >> 2] =
|
|
gm +
|
|
w(q[((Jl = bm << 2) + em) >> 2], 36)),
|
|
(q[(fm + 4) >> 2] = q[(Jl + jm) >> 2]),
|
|
(q[(fm + 8) >> 2] = q[(Jl + im) >> 2]),
|
|
(u[(Jl + km) >> 2] = q[(Jl + hm) >> 2] ?
|
|
x(1) :
|
|
x(0)),
|
|
0 < (0 | bm);
|
|
|
|
);
|
|
for (
|
|
fm = q[($l + 16) >> 2], Jl = 0;
|
|
(bm =
|
|
q[
|
|
(8 +
|
|
((gm +
|
|
w(
|
|
q[
|
|
((hm =
|
|
(Il = (Il + -1) | 0) << 2) +
|
|
em) >>
|
|
2
|
|
],
|
|
36
|
|
)) |
|
|
0)) >>
|
|
2
|
|
]),
|
|
(Jl = (Jl + (q[(fm + hm) >> 2] = bm)) | 0),
|
|
0 < (0 | Il);
|
|
|
|
);
|
|
Il = q[($l + 4) >> 2];
|
|
}
|
|
if (
|
|
((q[($l + 12) >> 2] = Il),
|
|
(q[($l + 20) >> 2] = Jl),
|
|
(Il = q[(am + 4) >> 2]),
|
|
1 <= (0 | (q[($l + 304) >> 2] = Il)))
|
|
) {
|
|
for (;
|
|
(Jl =
|
|
(q[($l + 308) >> 2] +
|
|
((Il = (Il + -1) | 0) << 5)) |
|
|
0),
|
|
(q[Jl >> 2] =
|
|
q[($l + 568) >> 2] +
|
|
w(
|
|
q[
|
|
((bm = Il << 2) +
|
|
q[(dm + 752) >> 2]) >>
|
|
2
|
|
],
|
|
36
|
|
)),
|
|
(q[(Jl + 4) >> 2] =
|
|
q[(bm + q[(dm + 764) >> 2]) >> 2]),
|
|
(q[(Jl + 8) >> 2] =
|
|
q[(bm + q[(dm + 768) >> 2]) >> 2]),
|
|
(em = q[(bm + q[(dm + 772) >> 2]) >> 2]),
|
|
(q[(Jl + 12) >> 2] = em),
|
|
(am = q[(bm + q[(dm + 776) >> 2]) >> 2]),
|
|
(q[(Jl + 16) >> 2] = am),
|
|
(q[(Jl + 28) >> 2] =
|
|
q[(bm + q[(dm + 760) >> 2]) >> 2]),
|
|
em >>> 0 <= 1 ?
|
|
em - 1 ?
|
|
((q[
|
|
(20 +
|
|
((q[($l + 60) >> 2] + w(am, 24)) |
|
|
0)) >>
|
|
2
|
|
] = Il),
|
|
(q[(Jl + 24) >> 2] = 1),
|
|
(q[(Jl + 20) >> 2] = 2)) :
|
|
((q[
|
|
(8 +
|
|
((q[($l + 168) >> 2] +
|
|
w(am, 12)) |
|
|
0)) >>
|
|
2
|
|
] = Il),
|
|
(q[(Jl + 24) >> 2] = 3),
|
|
(q[(Jl + 20) >> 2] = 4)) :
|
|
Y(4, 1179, 0),
|
|
0 < (0 | Il);
|
|
|
|
);
|
|
(dm = q[$l >> 2]), (am = q[(dm + 704) >> 2]);
|
|
}
|
|
bm = q[(am + 8) >> 2];
|
|
k: if (!((0 | (q[($l + 56) >> 2] = bm)) < 1)) {
|
|
if (
|
|
((Jl = (bm + -1) | 0),
|
|
(gm = q[(dm + 796) >> 2]),
|
|
(fm = q[(dm + 804) >> 2]),
|
|
(hm = q[(dm + 800) >> 2]),
|
|
(im = q[(dm + 780) >> 2]),
|
|
(jm = q[($l + 568) >> 2]),
|
|
(km = q[($l + 60) >> 2]),
|
|
r[(dm + 4) | 0] < 2)
|
|
)
|
|
for (;;)
|
|
if (
|
|
((Il = (km + w(Jl, 24)) | 0),
|
|
(q[Il >> 2] =
|
|
jm +
|
|
w(q[((em = Jl << 2) + im) >> 2], 36)),
|
|
(q[(Il + 4) >> 2] = q[(em + hm) >> 2]),
|
|
(q[(Il + 8) >> 2] = q[(em + fm) >> 2]),
|
|
(em = q[(em + gm) >> 2]),
|
|
(q[(Il + 12) >> 2] = 0),
|
|
(q[(Il + 16) >> 2] = em),
|
|
(Il = 0 < (0 | Jl)),
|
|
(Jl = (Jl + -1) | 0), !Il)
|
|
)
|
|
break k;
|
|
for (
|
|
lm = q[(dm + 808) >> 2];
|
|
(Il = (km + w(Jl, 24)) | 0),
|
|
(q[Il >> 2] =
|
|
jm +
|
|
w(q[((em = Jl << 2) + im) >> 2], 36)),
|
|
(q[(Il + 4) >> 2] = q[(em + hm) >> 2]),
|
|
(q[(Il + 8) >> 2] = q[(em + fm) >> 2]),
|
|
(q[(Il + 16) >> 2] = q[(em + gm) >> 2]),
|
|
(q[(Il + 12) >> 2] = q[(em + lm) >> 2]),
|
|
(Il = 0 < (0 | Jl)),
|
|
(Jl = (Jl + -1) | 0),
|
|
Il;
|
|
|
|
);
|
|
}
|
|
if (
|
|
((Jl = q[(am + 12) >> 2]),
|
|
1 <= (0 | (q[($l + 164) >> 2] = Jl)))
|
|
)
|
|
for (
|
|
em = q[(dm + 828) >> 2],
|
|
gm = q[(dm + 812) >> 2],
|
|
fm = q[($l + 568) >> 2],
|
|
hm = q[($l + 168) >> 2],
|
|
Il = Jl;
|
|
(im = (hm + w((Il = (Il + -1) | 0), 12)) | 0),
|
|
(q[im >> 2] =
|
|
fm +
|
|
w(q[((jm = Il << 2) + gm) >> 2], 36)),
|
|
(q[(im + 4) >> 2] = q[(em + jm) >> 2]),
|
|
0 < (0 | Il);
|
|
|
|
);
|
|
if (((Il = 0) | bm) < 1) em = 0;
|
|
else {
|
|
for (
|
|
gm = q[($l + 68) >> 2],
|
|
fm = q[($l + 60) >> 2],
|
|
em = 0;
|
|
(Jl =
|
|
q[
|
|
(q[
|
|
(fm + w((bm = (bm + -1) | 0), 24)) >> 2
|
|
] +
|
|
8) >>
|
|
2
|
|
]),
|
|
(em =
|
|
((q[(gm + (bm << 2)) >> 2] = Jl) + em) |
|
|
0),
|
|
0 < (0 | bm);
|
|
|
|
);
|
|
(Jl = q[($l + 164) >> 2]),
|
|
(bm = q[($l + 56) >> 2]);
|
|
}
|
|
if (
|
|
((q[($l + 64) >> 2] = bm),
|
|
(q[($l + 72) >> 2] = em),
|
|
(bm = $l),
|
|
1 <= (0 | Jl))
|
|
) {
|
|
for (
|
|
gm = q[($l + 176) >> 2],
|
|
fm = q[($l + 168) >> 2];
|
|
(em =
|
|
q[
|
|
(q[
|
|
(fm + w((Jl = (Jl + -1) | 0), 12)) >> 2
|
|
] +
|
|
8) >>
|
|
2
|
|
]),
|
|
(Il =
|
|
(Il + (q[(gm + (Jl << 2)) >> 2] = em)) |
|
|
0),
|
|
0 < (0 | Jl);
|
|
|
|
);
|
|
Jl = q[($l + 164) >> 2];
|
|
}
|
|
if (
|
|
((q[(bm + 172) >> 2] = Jl),
|
|
(q[($l + 180) >> 2] = Il),
|
|
(em = q[(am + 16) >> 2]),
|
|
1 <= (0 | (q[($l + 332) >> 2] = em)))
|
|
) {
|
|
for (
|
|
hm = q[(dm + 872) >> 2],
|
|
im = q[(dm + 892) >> 2],
|
|
jm = q[(dm + 880) >> 2],
|
|
km = q[(dm + 876) >> 2],
|
|
gm = q[(dm + 852) >> 2],
|
|
fm = q[($l + 568) >> 2],
|
|
lm = q[($l + 336) >> 2],
|
|
Il = em;
|
|
(Jl = (lm + w((Il = (Il + -1) | 0), 20)) | 0),
|
|
(q[Jl >> 2] =
|
|
fm +
|
|
w(q[((bm = Il << 2) + gm) >> 2], 36)),
|
|
(q[(Jl + 4) >> 2] = q[(bm + km) >> 2]),
|
|
(q[(Jl + 8) >> 2] = q[(bm + jm) >> 2]),
|
|
(q[(Jl + 16) >> 2] = q[(bm + im) >> 2]),
|
|
(q[(Jl + 12) >> 2] = q[(bm + hm) >> 2]),
|
|
0 < (0 | Il);
|
|
|
|
);
|
|
for (
|
|
bm = q[($l + 344) >> 2], Jl = 0;
|
|
(Il =
|
|
q[
|
|
(8 +
|
|
((fm +
|
|
w(
|
|
q[
|
|
((hm =
|
|
(em = (em + -1) | 0) << 2) +
|
|
gm) >>
|
|
2
|
|
],
|
|
36
|
|
)) |
|
|
0)) >>
|
|
2
|
|
]),
|
|
(Jl = ((q[(bm + hm) >> 2] = Il) + Jl) | 0),
|
|
0 < (0 | em);
|
|
|
|
);
|
|
if (
|
|
((q[($l + 348) >> 2] = Jl),
|
|
(em = q[($l + 332) >> 2]), !((0 | (q[($l + 340) >> 2] = em)) < 1))
|
|
)
|
|
for (
|
|
Jl = em << 2,
|
|
bm = q[($l + 456) >> 2],
|
|
gm = q[($l + 452) >> 2];
|
|
(q[
|
|
((fm = (Il = (Jl + -4) | 0) << 2) + gm) >>
|
|
2
|
|
] = 1065353216),
|
|
(q[
|
|
((hm = ((Jl <<= 2) - 4) | 0) + gm) >> 2
|
|
] = 1065353216),
|
|
(q[
|
|
(im =
|
|
((Jl = (Jl + -12) | 0) + gm) | 0) >> 2
|
|
] = 1065353216),
|
|
(q[(im + 4) >> 2] = 1065353216),
|
|
(q[(bm + fm) >> 2] = 0),
|
|
(q[(bm + hm) >> 2] = 1065353216),
|
|
(q[(Jl = (Jl + bm) | 0) >> 2] = 0),
|
|
(q[(Jl + 4) >> 2] = 0),
|
|
(Jl = Il),
|
|
0 < (0 | (em = (em + -1) | 0));
|
|
|
|
);
|
|
} else
|
|
(q[($l + 340) >> 2] = em),
|
|
(q[($l + 348) >> 2] = 0);
|
|
if (
|
|
((em = q[(am + 72) >> 2]),
|
|
1 <= (0 | (q[($l + 480) >> 2] = em)))
|
|
)
|
|
for (
|
|
hm = q[(dm + 1208) >> 2],
|
|
im = q[(dm + 1224) >> 2],
|
|
jm = q[(dm + 1220) >> 2],
|
|
km = q[(dm + 1216) >> 2],
|
|
lm = q[(dm + 1212) >> 2],
|
|
mm = q[($l + 484) >> 2],
|
|
bm = 0;;
|
|
|
|
) {
|
|
if (
|
|
((Il = (mm + w(bm, 28)) | 0),
|
|
(gm = q[((Jl = bm << 2) + lm) >> 2]),
|
|
(q[(Il + 4) >> 2] = gm),
|
|
(q[Il >> 2] = q[(Jl + km) >> 2]),
|
|
(fm = q[(Jl + jm) >> 2]),
|
|
(q[(Il + 16) >> 2] = fm),
|
|
(om = q[(Jl + im) >> 2]),
|
|
(q[(Il + 20) >> 2] = om),
|
|
(q[(Il + 8) >> 2] = 0),
|
|
(q[(Il + 24) >> 2] = 1 + ((fm - om) | 0)),
|
|
1 <= (0 | gm))
|
|
)
|
|
for (
|
|
om = q[(Jl + hm) >> 2],
|
|
qm = q[(Il + 12) >> 2],
|
|
pm = q[(dm + 1236) >> 2],
|
|
sm = q[(dm + 1228) >> 2],
|
|
rm = q[(dm + 1232) >> 2],
|
|
Jl = 0;
|
|
(q[
|
|
(4 + (Il = (qm + (Jl << 4)) | 0)) >> 2
|
|
] = q[((fm = (Jl + om) << 2) + rm) >> 2]),
|
|
(q[Il >> 2] = q[(fm + sm) >> 2]),
|
|
(fm = q[(fm + pm) >> 2]),
|
|
(q[(Il + 12) >> 2] = 0),
|
|
(q[(Il + 8) >> 2] = fm),
|
|
(0 | gm) != (0 | (Jl = (Jl + 1) | 0));
|
|
|
|
);
|
|
if ((0 | em) == (0 | (bm = (bm + 1) | 0)))
|
|
break;
|
|
}
|
|
if (
|
|
((Jl = q[(am + 80) >> 2]),
|
|
(0 | (q[($l + 500) >> 2] = Jl)) < 1)
|
|
)
|
|
bm = 0;
|
|
else {
|
|
for (
|
|
fm = q[(dm + 1280) >> 2],
|
|
hm = q[(dm + 1268) >> 2],
|
|
im = q[(dm + 1276) >> 2],
|
|
jm = q[(dm + 1272) >> 2],
|
|
km = q[(dm + 1264) >> 2],
|
|
lm = q[(dm + 1260) >> 2],
|
|
em = q[(dm + 1248) >> 2],
|
|
gm = q[($l + 568) >> 2],
|
|
mm = q[($l + 504) >> 2];
|
|
(Il = (mm + w((Jl = (Jl + -1) | 0), 24)) | 0),
|
|
(q[Il >> 2] =
|
|
gm +
|
|
w(q[((bm = Jl << 2) + em) >> 2], 36)),
|
|
(q[(Il + 4) >> 2] = q[(bm + lm) >> 2]),
|
|
(q[(Il + 8) >> 2] = q[(bm + km) >> 2]),
|
|
(q[(Il + 12) >> 2] = q[(bm + jm) >> 2]),
|
|
(bm = q[(bm + hm) >> 2]),
|
|
(q[(Il + 20) >> 2] = fm + (bm << 1)),
|
|
(q[(Il + 16) >> 2] = im + (bm << 2)),
|
|
0 < (0 | Jl);
|
|
|
|
);
|
|
if ((0 | (Jl = q[($l + 500) >> 2])) < 1) bm = 0;
|
|
else {
|
|
for (
|
|
fm = q[($l + 512) >> 2], bm = 0;
|
|
(Il =
|
|
q[
|
|
(8 +
|
|
((gm +
|
|
w(
|
|
q[
|
|
((hm =
|
|
(Jl = (Jl + -1) | 0) << 2) +
|
|
em) >>
|
|
2
|
|
],
|
|
36
|
|
)) |
|
|
0)) >>
|
|
2
|
|
]),
|
|
(bm =
|
|
((q[(fm + hm) >> 2] = Il) + bm) | 0),
|
|
0 < (0 | Jl);
|
|
|
|
);
|
|
Jl = q[($l + 500) >> 2];
|
|
}
|
|
}
|
|
(q[($l + 508) >> 2] = Jl),
|
|
(q[($l + 516) >> 2] = bm);
|
|
o: if (4 <= r[(a + 4) | 0]) {
|
|
if (!((em = r[(dm + 4) | 0]) >>> 0 < 4)) {
|
|
if (
|
|
((Jl = q[(am + 120) >> 2]),
|
|
1 <= (0 | (q[($l + 572) >> 2] = Jl)))
|
|
) {
|
|
for (
|
|
fm = q[(dm + 1172) >> 2],
|
|
hm = q[($l + 576) >> 2];
|
|
(em =
|
|
(0 |
|
|
(am =
|
|
q[
|
|
((Il =
|
|
(Jl = (Jl + -1) | 0) << 2) +
|
|
fm) >>
|
|
2
|
|
])) <
|
|
0 ?
|
|
(am = gm = bm = 0) :
|
|
((bm =
|
|
((em =
|
|
q[
|
|
(Il + q[(dm + 1176) >> 2]) >>
|
|
2
|
|
] << 2) +
|
|
q[(dm + 1188) >> 2]) |
|
|
0),
|
|
(gm =
|
|
q[
|
|
(Il + q[(dm + 1180) >> 2]) >> 2
|
|
]),
|
|
(am =
|
|
(q[($l + 544) >> 2] + w(am, 52)) |
|
|
0),
|
|
(em + q[(dm + 1184) >> 2]) | 0)),
|
|
(Il = (hm + w(Jl, 20)) | 0),
|
|
(q[(Il + 12) >> 2] = gm),
|
|
(q[(Il + 8) >> 2] = bm),
|
|
(q[(Il + 4) >> 2] = em),
|
|
(q[Il >> 2] = am),
|
|
0 < (0 | Jl);
|
|
|
|
);
|
|
if (
|
|
((dm = q[$l >> 2]),
|
|
(em = r[(dm + 4) | 0]) >>> 0 < 4)
|
|
)
|
|
break o;
|
|
}
|
|
if (
|
|
((am = q[(dm + 704) >> 2]),
|
|
(bm = q[(am + 100) >> 2]),
|
|
1 <= (0 | (q[($l + 580) >> 2] = bm)))
|
|
)
|
|
for (
|
|
gm = q[(dm + 1084) >> 2],
|
|
fm = q[(dm + 1076) >> 2],
|
|
hm = q[(dm + 1192) >> 2],
|
|
im = q[(dm + 1080) >> 2],
|
|
jm = q[($l + 584) >> 2];
|
|
(Il =
|
|
(jm + w((bm = (bm + -1) | 0), 28)) | 0),
|
|
(q[Il >> 2] =
|
|
q[((Jl = bm << 2) + im) >> 2]),
|
|
(q[(Il + 4) >> 2] =
|
|
hm + (q[(Jl + fm) >> 2] << 2)),
|
|
(Jl = q[(Jl + gm) >> 2]),
|
|
(q[(Il + 20) >> 2] = 1),
|
|
(q[(Il + 24) >> 2] = 1),
|
|
(q[(Il + 12) >> 2] = 0),
|
|
(q[(Il + 16) >> 2] = 0),
|
|
(q[(Il + 8) >> 2] = Jl),
|
|
0 < (0 | bm);
|
|
|
|
);
|
|
if (
|
|
((bm = q[(am + 104) >> 2]),
|
|
1 <= (0 | (q[($l + 588) >> 2] = bm)))
|
|
) {
|
|
for (;;) {
|
|
if (
|
|
((Il =
|
|
(q[($l + 592) >> 2] +
|
|
w((bm = (bm + -1) | 0), 48)) |
|
|
0),
|
|
(q[Il >> 2] =
|
|
q[($l + 584) >> 2] +
|
|
w(
|
|
q[
|
|
((em = bm << 2) +
|
|
q[(dm + 1088) >> 2]) >>
|
|
2
|
|
],
|
|
28
|
|
)),
|
|
(Jl =
|
|
q[(em + q[(dm + 1092) >> 2]) >> 2]),
|
|
(q[(Il + 28) >> 2] = 1),
|
|
(q[(Il + 32) >> 2] = 1),
|
|
(q[(Il + 8) >> 2] = 0),
|
|
(q[(Il + 4) >> 2] = Jl),
|
|
(am =
|
|
q[(em + q[(dm + 1104) >> 2]) >> 2]),
|
|
1 <= (0 | (q[(Il + 36) >> 2] = am)))
|
|
)
|
|
for (
|
|
Jl = 0;
|
|
(q[
|
|
(q[(Il + 40) >> 2] + (Jl << 2)) >> 2
|
|
] =
|
|
q[($l + 576) >> 2] +
|
|
w(
|
|
q[
|
|
(q[(dm + 1168) >> 2] +
|
|
((q[
|
|
(em +
|
|
q[(dm + 1100) >> 2]) >>
|
|
2
|
|
] +
|
|
Jl) <<
|
|
2)) >>
|
|
2
|
|
],
|
|
20
|
|
)),
|
|
(0 | am) !=
|
|
(0 | (Jl = (Jl + 1) | 0));
|
|
|
|
);
|
|
if (!(1 <= (0 | bm))) break;
|
|
}
|
|
(dm = q[$l >> 2]), (em = r[(dm + 4) | 0]);
|
|
}
|
|
if (!(em >>> 0 < 4)) {
|
|
if (
|
|
((em = q[(a + 704) >> 2]),
|
|
(Jl = q[(em + 108) >> 2]),
|
|
1 <= (0 | (q[($l + 604) >> 2] = Jl)))
|
|
)
|
|
for (
|
|
am = q[(a + 1124) >> 2],
|
|
gm = q[(a + 1128) >> 2],
|
|
fm = q[(a + 1120) >> 2],
|
|
hm = q[($l + 592) >> 2],
|
|
im = q[($l + 608) >> 2];
|
|
(Il =
|
|
(im + w((Jl = (Jl + -1) | 0), 12)) |
|
|
0),
|
|
(q[Il >> 2] =
|
|
q[((bm = Jl << 2) + fm) >> 2]),
|
|
(q[(Il + 4) >> 2] =
|
|
q[(bm + gm) >> 2]),
|
|
(q[(Il + 8) >> 2] =
|
|
hm + w(q[(am + bm) >> 2], 48)),
|
|
0 < (0 | Jl);
|
|
|
|
);
|
|
if (
|
|
((Jl = q[(em + 112) >> 2]),
|
|
1 <= (0 | (q[($l + 620) >> 2] = Jl)))
|
|
)
|
|
for (
|
|
em = q[(a + 1148) >> 2],
|
|
am = q[(a + 1152) >> 2],
|
|
gm = q[(a + 1144) >> 2],
|
|
fm = q[($l + 592) >> 2],
|
|
hm = q[($l + 624) >> 2];
|
|
(Il =
|
|
(hm + w((Jl = (Jl + -1) | 0), 12)) |
|
|
0),
|
|
(q[Il >> 2] =
|
|
q[((bm = Jl << 2) + gm) >> 2]),
|
|
(q[(Il + 4) >> 2] =
|
|
q[(am + bm) >> 2]),
|
|
(q[(Il + 8) >> 2] =
|
|
fm + w(q[(bm + em) >> 2], 48)),
|
|
0 < (0 | Jl);
|
|
|
|
);
|
|
if (
|
|
((bm = q[(dm + 1192) >> 2]),
|
|
(Il = q[(q[(dm + 704) >> 2] + 20) >> 2]),
|
|
(q[($l + 640) >> 2] = q[(dm + 972) >> 2]),
|
|
(em = q[(dm + 964) >> 2]),
|
|
(q[($l + 636) >> 2] = em), !((0 | Il) < (Jl = 1)) &&
|
|
((q[em >> 2] =
|
|
bm +
|
|
(q[q[(dm + 968) >> 2] >> 2] << 2)),
|
|
1 != (0 | Il)))
|
|
)
|
|
for (;
|
|
(q[
|
|
((em = Jl << 2) +
|
|
q[($l + 636) >> 2]) >>
|
|
2
|
|
] =
|
|
bm +
|
|
(q[(em + q[(dm + 968) >> 2]) >> 2] <<
|
|
2)),
|
|
(0 | Il) != (0 | (Jl = (Jl + 1) | 0));
|
|
|
|
);
|
|
}
|
|
}
|
|
} else
|
|
if (!(q[(am + 20) >> 2] < 1))
|
|
for (am = 0;;) {
|
|
if (
|
|
((bm =
|
|
q[
|
|
((gm = am << 2) + q[($l + 636) >> 2]) >>
|
|
2
|
|
]),
|
|
1 <=
|
|
((Il = 0) |
|
|
(Jl =
|
|
q[(gm + q[(dm + 952) >> 2]) >> 2])))
|
|
)
|
|
for (
|
|
im =
|
|
(Jl +
|
|
(fm =
|
|
q[
|
|
(gm + q[(dm + 948) >> 2]) >> 2
|
|
])) |
|
|
0,
|
|
jm = q[(dm + 1060) >> 2],
|
|
km = q[(dm + 1056) >> 2];;
|
|
|
|
) {
|
|
if (
|
|
1 <=
|
|
(0 |
|
|
(hm = q[((Jl = fm << 2) + jm) >> 2]))
|
|
)
|
|
for (
|
|
lm =
|
|
(hm + (em = q[(Jl + km) >> 2])) | 0,
|
|
mm = q[(dm + 1192) >> 2];;
|
|
|
|
) {
|
|
(hm = (bm + (Il << 2)) | 0),
|
|
(nm = u[(mm + (em << 2)) >> 2]),
|
|
(Jl = bm);
|
|
q: {
|
|
if (0 < (0 | Il))
|
|
for (;;) {
|
|
if (u[Jl >> 2] == nm) break q;
|
|
if (!(
|
|
(Jl = (Jl + 4) | 0) >>> 0 <
|
|
hm >>> 0
|
|
))
|
|
break;
|
|
}
|
|
(u[hm >> 2] = nm),
|
|
(Il = (Il + 1) | 0);
|
|
}
|
|
if (!(
|
|
(0 | (em = (em + 1) | 0)) <
|
|
(0 | lm)
|
|
))
|
|
break;
|
|
}
|
|
if (!((0 | (fm = (fm + 1) | 0)) < (0 | im)))
|
|
break;
|
|
}
|
|
if (
|
|
((function(a, Sm) {
|
|
var un,
|
|
Kn,
|
|
xn = 0,
|
|
yn = 0,
|
|
Jn = 0;
|
|
(q[
|
|
(8 + (L = un = (L - 208) | 0)) >> 2
|
|
] = 1),
|
|
(q[(12 + un) >> 2] = 0);
|
|
a: if ((Kn = Sm << 2)) {
|
|
for (
|
|
q[(16 + un) >> 2] = 4,
|
|
Jn = Sm = q[(20 + un) >> 2] = 4,
|
|
xn = 2;
|
|
(Sm =
|
|
(((Jn + 4) | 0) + (yn = Sm)) | 0),
|
|
(q[
|
|
(((16 + un) | 0) + (xn << 2)) >> 2
|
|
] = Sm),
|
|
(xn = (xn + 1) | 0),
|
|
(Jn = yn),
|
|
Sm >>> 0 < Kn >>> 0;
|
|
|
|
);
|
|
if (
|
|
(yn = (((a + Kn) | 0) - 4) | 0) >>>
|
|
0 <=
|
|
a >>> 0
|
|
)
|
|
Sm = xn = 1;
|
|
else
|
|
for (
|
|
Sm = xn = 1;
|
|
(Sm =
|
|
3 == (3 & xn) ?
|
|
(ta(a, Sm, (16 + un) | 0),
|
|
ma((8 + un) | 0, 2),
|
|
(Sm + 2) | 0) :
|
|
(t[
|
|
(((16 + un) | 0) +
|
|
((Jn = (Sm + -1) | 0) <<
|
|
2)) >>
|
|
2
|
|
] >=
|
|
(yn - a) >>> 0 ?
|
|
la(
|
|
a,
|
|
(8 + un) | 0,
|
|
Sm,
|
|
0,
|
|
(16 + un) | 0
|
|
) :
|
|
ta(a, Sm, (16 + un) | 0),
|
|
1 == (0 | Sm) ?
|
|
(ka((8 + un) | 0, 1), 0) :
|
|
(ka((8 + un) | 0, Jn),
|
|
1))),
|
|
(xn = 1 | q[(8 + un) >> 2]),
|
|
(q[(8 + un) >> 2] = xn),
|
|
(a = (a + 4) | 0) >>> 0 <
|
|
yn >>> 0;
|
|
|
|
);
|
|
for (
|
|
la(
|
|
a,
|
|
(8 + un) | 0,
|
|
Sm,
|
|
0,
|
|
(16 + un) | 0
|
|
);;
|
|
|
|
) {
|
|
e: {
|
|
f: {
|
|
g: {
|
|
if (!(
|
|
(1 != (0 | Sm)) |
|
|
(1 != (0 | xn))
|
|
)) {
|
|
if (q[(12 + un) >> 2])
|
|
break g;
|
|
break a;
|
|
}
|
|
if (1 < (0 | Sm)) break f;
|
|
}
|
|
ma(
|
|
(8 + un) | 0,
|
|
(yn = Oa((8 + un) | 0))
|
|
),
|
|
(xn = q[(8 + un) >> 2]),
|
|
(Sm = (Sm + yn) | 0);
|
|
break e;
|
|
}
|
|
ka((8 + un) | 0, 2),
|
|
(q[(8 + un) >> 2] =
|
|
7 ^ q[(8 + un) >> 2]),
|
|
ma((8 + un) | 0, 1),
|
|
la(
|
|
((Jn = (a + -4) | 0) -
|
|
q[
|
|
(((16 + un) | 0) +
|
|
((yn = (Sm + -2) | 0) <<
|
|
2)) >>
|
|
2
|
|
]) |
|
|
0,
|
|
(8 + un) | 0,
|
|
(Sm + -1) | 0,
|
|
1,
|
|
(16 + un) | 0
|
|
),
|
|
ka((8 + un) | 0, 1),
|
|
(xn = 1 | q[(8 + un) >> 2]),
|
|
(q[(8 + un) >> 2] = xn),
|
|
la(
|
|
Jn,
|
|
(8 + un) | 0,
|
|
yn,
|
|
1,
|
|
(16 + un) | 0
|
|
),
|
|
(Sm = yn);
|
|
}
|
|
a = (a + -4) | 0;
|
|
}
|
|
}
|
|
L = (208 + un) | 0;
|
|
})(bm, Il),
|
|
(q[(gm + q[($l + 640) >> 2]) >> 2] = Il), !(
|
|
(0 | (am = (am + 1) | 0)) <
|
|
q[(q[(dm + 704) >> 2] + 20) >> 2]
|
|
))
|
|
)
|
|
break;
|
|
}
|
|
if (!(
|
|
(r[(a + 4) | 0] < 5) |
|
|
(r[(q[$l >> 2] + 4) | 0] < 4)
|
|
)) {
|
|
if (
|
|
((Il = q[(a + 704) >> 2]),
|
|
(Jl = q[(Il + 128) >> 2]),
|
|
1 <= (0 | (q[($l + 596) >> 2] = Jl)))
|
|
)
|
|
for (
|
|
em = q[(a + 1112) >> 2],
|
|
am = q[(a + 1116) >> 2],
|
|
gm = q[(a + 1108) >> 2],
|
|
fm = q[($l + 592) >> 2],
|
|
hm = q[($l + 600) >> 2];
|
|
(dm =
|
|
(hm + w((Jl = (Jl + -1) | 0), 12)) | 0),
|
|
(q[dm >> 2] =
|
|
q[((bm = Jl << 2) + gm) >> 2]),
|
|
(q[(dm + 4) >> 2] = q[(am + bm) >> 2]),
|
|
(q[(dm + 8) >> 2] =
|
|
fm + w(q[(bm + em) >> 2], 48)),
|
|
0 < (0 | Jl);
|
|
|
|
);
|
|
if (
|
|
((Jl = q[(Il + 132) >> 2]),
|
|
1 <= (0 | (q[($l + 612) >> 2] = Jl)))
|
|
)
|
|
for (
|
|
em = q[(a + 1136) >> 2],
|
|
am = q[(a + 1140) >> 2],
|
|
gm = q[(a + 1132) >> 2],
|
|
fm = q[($l + 592) >> 2],
|
|
hm = q[($l + 616) >> 2];
|
|
(dm =
|
|
(hm + w((Jl = (Jl + -1) | 0), 12)) | 0),
|
|
(q[dm >> 2] =
|
|
q[((bm = Jl << 2) + gm) >> 2]),
|
|
(q[(dm + 4) >> 2] = q[(am + bm) >> 2]),
|
|
(q[(dm + 8) >> 2] =
|
|
fm + w(q[(bm + em) >> 2], 48)),
|
|
0 < (0 | Jl);
|
|
|
|
);
|
|
if (
|
|
((Jl = q[(Il + 136) >> 2]), !((0 | (q[($l + 628) >> 2] = Jl)) < 1))
|
|
)
|
|
for (
|
|
dm = q[(a + 1160) >> 2],
|
|
bm = q[(a + 1164) >> 2],
|
|
em = q[(a + 1156) >> 2],
|
|
am = q[($l + 592) >> 2],
|
|
gm = q[($l + 632) >> 2];
|
|
(a =
|
|
(gm + w((Jl = (Jl + -1) | 0), 12)) | 0),
|
|
(q[a >> 2] =
|
|
q[((Il = Jl << 2) + em) >> 2]),
|
|
(q[(a + 4) >> 2] = q[(Il + bm) >> 2]),
|
|
(q[(a + 8) >> 2] =
|
|
am + w(q[(Il + dm) >> 2], 48)),
|
|
0 < (0 | Jl);
|
|
|
|
);
|
|
}
|
|
ua($l);
|
|
}
|
|
return (L = (576 + cm) | 0), $l;
|
|
})(a, Wa, Xa))
|
|
)
|
|
break a;
|
|
(q[(36 + Ya) >> 2] = 2209),
|
|
(q[(32 + Ya) >> 2] = 2361),
|
|
Y(4, 1294, (32 + Ya) | 0);
|
|
}
|
|
else
|
|
(q[(20 + Ya) >> 2] = 1444),
|
|
(q[(16 + Ya) >> 2] = 2361),
|
|
Y(4, 1294, (16 + Ya) | 0);
|
|
else
|
|
(q[(4 + Ya) >> 2] = 2132),
|
|
(q[Ya >> 2] = 2361),
|
|
Y(4, 1294, Ya);
|
|
Wa = 0;
|
|
}
|
|
return (L = (64 + Ya) | 0), 0 | Wa;
|
|
}
|
|
|
|
function xa(a) {
|
|
var Wa;
|
|
return (
|
|
(L = Wa = (L - 16) | 0),
|
|
(a = (a |= 0) ?
|
|
(function(a) {
|
|
var Il;
|
|
return (
|
|
ca((16 + (L = Il = (L - 576) | 0)) | 0, 0, 560),
|
|
Fa(a, (16 + Il) | 0, (12 + Il) | 0),
|
|
(L = (576 + Il) | 0),
|
|
q[(12 + Il) >> 2]
|
|
);
|
|
})(a) :
|
|
((q[(4 + Wa) >> 2] = 2132),
|
|
(q[Wa >> 2] = 2343),
|
|
Y(4, 1294, Wa),
|
|
0)),
|
|
(L = (16 + Wa) | 0),
|
|
0 | a
|
|
);
|
|
}
|
|
|
|
function ya(a) {
|
|
var Xa = r[(a + 4) | 0];
|
|
X(q[(a + 704) >> 2], 4, 64),
|
|
da(q[(a + 708) >> 2], 4),
|
|
da((q[(a + 708) >> 2] + 4) | 0, 4),
|
|
da((q[(a + 708) >> 2] + 8) | 0, 4),
|
|
da((q[(a + 708) >> 2] + 12) | 0, 4),
|
|
da((q[(a + 708) >> 2] + 16) | 0, 4),
|
|
da((q[(a + 708) >> 2] + 20) | 0, 1),
|
|
X(q[(a + 720) >> 2], 4, q[q[(a + 704) >> 2] >> 2]),
|
|
X(q[(a + 724) >> 2], 4, q[q[(a + 704) >> 2] >> 2]),
|
|
X(q[(a + 728) >> 2], 4, q[q[(a + 704) >> 2] >> 2]),
|
|
X(q[(a + 732) >> 2], 4, q[q[(a + 704) >> 2] >> 2]),
|
|
X(q[(a + 736) >> 2], 4, q[q[(a + 704) >> 2] >> 2]),
|
|
X(q[(a + 740) >> 2], 4, q[q[(a + 704) >> 2] >> 2]),
|
|
X(q[(a + 752) >> 2], 4, q[(q[(a + 704) >> 2] + 4) >> 2]),
|
|
X(q[(a + 756) >> 2], 4, q[(q[(a + 704) >> 2] + 4) >> 2]),
|
|
X(q[(a + 760) >> 2], 4, q[(q[(a + 704) >> 2] + 4) >> 2]),
|
|
X(q[(a + 764) >> 2], 4, q[(q[(a + 704) >> 2] + 4) >> 2]),
|
|
X(q[(a + 768) >> 2], 4, q[(q[(a + 704) >> 2] + 4) >> 2]),
|
|
X(q[(a + 772) >> 2], 4, q[(q[(a + 704) >> 2] + 4) >> 2]),
|
|
X(q[(a + 776) >> 2], 4, q[(q[(a + 704) >> 2] + 4) >> 2]),
|
|
X(q[(a + 780) >> 2], 4, q[(q[(a + 704) >> 2] + 8) >> 2]),
|
|
X(q[(a + 784) >> 2], 4, q[(q[(a + 704) >> 2] + 8) >> 2]),
|
|
X(q[(a + 788) >> 2], 4, q[(q[(a + 704) >> 2] + 8) >> 2]),
|
|
X(q[(a + 796) >> 2], 4, q[(q[(a + 704) >> 2] + 8) >> 2]),
|
|
X(q[(a + 800) >> 2], 4, q[(q[(a + 704) >> 2] + 8) >> 2]),
|
|
X(q[(a + 804) >> 2], 4, q[(q[(a + 704) >> 2] + 8) >> 2]),
|
|
X(q[(a + 812) >> 2], 4, q[(q[(a + 704) >> 2] + 12) >> 2]),
|
|
X(q[(a + 816) >> 2], 4, q[(q[(a + 704) >> 2] + 12) >> 2]),
|
|
X(q[(a + 820) >> 2], 4, q[(q[(a + 704) >> 2] + 12) >> 2]),
|
|
X(q[(a + 828) >> 2], 4, q[(q[(a + 704) >> 2] + 12) >> 2]),
|
|
X(q[(a + 852) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 856) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 860) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 868) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 872) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 876) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 880) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 884) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 888) >> 2], 1, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 892) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 896) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 900) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 904) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 908) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 912) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 924) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 928) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 932) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 936) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 940) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 948) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 952) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 976) >> 2], 4, q[(q[(a + 704) >> 2] + 24) >> 2]),
|
|
X(q[(a + 980) >> 2], 4, q[(q[(a + 704) >> 2] + 28) >> 2]),
|
|
X(q[(a + 984) >> 2], 4, q[(q[(a + 704) >> 2] + 28) >> 2]),
|
|
X(q[(a + 996) >> 2], 4, q[(q[(a + 704) >> 2] + 32) >> 2]),
|
|
X(q[(a + 1e3) >> 2], 4, q[(q[(a + 704) >> 2] + 32) >> 2]),
|
|
X(q[(a + 1004) >> 2], 4, q[(q[(a + 704) >> 2] + 32) >> 2]),
|
|
X(q[(a + 1008) >> 2], 4, q[(q[(a + 704) >> 2] + 32) >> 2]),
|
|
X(q[(a + 1012) >> 2], 4, q[(q[(a + 704) >> 2] + 32) >> 2]),
|
|
X(q[(a + 1016) >> 2], 4, q[(q[(a + 704) >> 2] + 32) >> 2]),
|
|
X(q[(a + 1020) >> 2], 4, q[(q[(a + 704) >> 2] + 32) >> 2]),
|
|
X(q[(a + 1032) >> 2], 4, q[(q[(a + 704) >> 2] + 36) >> 2]),
|
|
X(q[(a + 1036) >> 2], 4, q[(q[(a + 704) >> 2] + 36) >> 2]),
|
|
X(q[(a + 1040) >> 2], 4, q[(q[(a + 704) >> 2] + 36) >> 2]),
|
|
X(q[(a + 1052) >> 2], 4, q[(q[(a + 704) >> 2] + 40) >> 2]),
|
|
X(q[(a + 1064) >> 2], 4, q[(q[(a + 704) >> 2] + 44) >> 2]),
|
|
X(q[(a + 1068) >> 2], 4, q[(q[(a + 704) >> 2] + 48) >> 2]),
|
|
X(q[(a + 1072) >> 2], 4, q[(q[(a + 704) >> 2] + 48) >> 2]),
|
|
X(q[(a + 1056) >> 2], 4, q[(q[(a + 704) >> 2] + 52) >> 2]),
|
|
X(q[(a + 1060) >> 2], 4, q[(q[(a + 704) >> 2] + 52) >> 2]),
|
|
X(q[(a + 1192) >> 2], 4, q[(q[(a + 704) >> 2] + 56) >> 2]),
|
|
X(q[(a + 1196) >> 2], 4, q[(q[(a + 704) >> 2] + 60) >> 2]),
|
|
X(q[(a + 1200) >> 2], 2, q[(q[(a + 704) >> 2] + 64) >> 2]),
|
|
X(q[(a + 1204) >> 2], 4, q[(q[(a + 704) >> 2] + 68) >> 2]),
|
|
X(q[(a + 1208) >> 2], 4, q[(q[(a + 704) >> 2] + 72) >> 2]),
|
|
X(q[(a + 1212) >> 2], 4, q[(q[(a + 704) >> 2] + 72) >> 2]),
|
|
X(q[(a + 1216) >> 2], 4, q[(q[(a + 704) >> 2] + 72) >> 2]),
|
|
X(q[(a + 1220) >> 2], 4, q[(q[(a + 704) >> 2] + 72) >> 2]),
|
|
X(q[(a + 1224) >> 2], 4, q[(q[(a + 704) >> 2] + 72) >> 2]),
|
|
X(q[(a + 1228) >> 2], 4, q[(q[(a + 704) >> 2] + 76) >> 2]),
|
|
X(q[(a + 1232) >> 2], 4, q[(q[(a + 704) >> 2] + 76) >> 2]),
|
|
X(q[(a + 1236) >> 2], 4, q[(q[(a + 704) >> 2] + 76) >> 2]),
|
|
X(q[(a + 1248) >> 2], 4, q[(q[(a + 704) >> 2] + 80) >> 2]),
|
|
X(q[(a + 1252) >> 2], 4, q[(q[(a + 704) >> 2] + 80) >> 2]),
|
|
X(q[(a + 1256) >> 2], 4, q[(q[(a + 704) >> 2] + 80) >> 2]),
|
|
X(q[(a + 1260) >> 2], 4, q[(q[(a + 704) >> 2] + 80) >> 2]),
|
|
X(q[(a + 1264) >> 2], 4, q[(q[(a + 704) >> 2] + 80) >> 2]),
|
|
X(q[(a + 1268) >> 2], 4, q[(q[(a + 704) >> 2] + 80) >> 2]),
|
|
X(q[(a + 1272) >> 2], 4, q[(q[(a + 704) >> 2] + 80) >> 2]),
|
|
X(q[(a + 1276) >> 2], 4, q[(q[(a + 704) >> 2] + 84) >> 2]),
|
|
X(q[(a + 1280) >> 2], 2, q[(q[(a + 704) >> 2] + 84) >> 2]),
|
|
X(q[(a + 1284) >> 2], 4, q[(q[(a + 704) >> 2] + 88) >> 2]),
|
|
Xa >>> 0 < 2 ||
|
|
(X(q[(a + 808) >> 2], 4, q[(q[(a + 704) >> 2] + 8) >> 2]),
|
|
Xa >>> 0 < 4) ||
|
|
(X(q[(a + 968) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 972) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 792) >> 2], 4, q[(q[(a + 704) >> 2] + 8) >> 2]),
|
|
X(q[(a + 824) >> 2], 4, q[(q[(a + 704) >> 2] + 12) >> 2]),
|
|
X(q[(a + 864) >> 2], 4, q[(q[(a + 704) >> 2] + 16) >> 2]),
|
|
X(q[(a + 1288) >> 2], 4, q[(q[(a + 704) >> 2] + 92) >> 2]),
|
|
X(q[(a + 1292) >> 2], 4, q[(q[(a + 704) >> 2] + 92) >> 2]),
|
|
X(q[(a + 1296) >> 2], 4, q[(q[(a + 704) >> 2] + 92) >> 2]),
|
|
X(q[(a + 1300) >> 2], 4, q[(q[(a + 704) >> 2] + 96) >> 2]),
|
|
X(q[(a + 1304) >> 2], 4, q[(q[(a + 704) >> 2] + 96) >> 2]),
|
|
X(q[(a + 1308) >> 2], 4, q[(q[(a + 704) >> 2] + 96) >> 2]),
|
|
X(q[(a + 944) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 956) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 960) >> 2], 4, q[(q[(a + 704) >> 2] + 20) >> 2]),
|
|
X(q[(a + 1076) >> 2], 4, q[(q[(a + 704) >> 2] + 100) >> 2]),
|
|
X(q[(a + 1080) >> 2], 4, q[(q[(a + 704) >> 2] + 100) >> 2]),
|
|
X(q[(a + 1084) >> 2], 4, q[(q[(a + 704) >> 2] + 100) >> 2]),
|
|
X(q[(a + 1088) >> 2], 4, q[(q[(a + 704) >> 2] + 104) >> 2]),
|
|
X(q[(a + 1092) >> 2], 4, q[(q[(a + 704) >> 2] + 104) >> 2]),
|
|
X(q[(a + 1096) >> 2], 4, q[(q[(a + 704) >> 2] + 104) >> 2]),
|
|
X(q[(a + 1100) >> 2], 4, q[(q[(a + 704) >> 2] + 104) >> 2]),
|
|
X(q[(a + 1104) >> 2], 4, q[(q[(a + 704) >> 2] + 104) >> 2]),
|
|
X(q[(a + 1120) >> 2], 4, q[(q[(a + 704) >> 2] + 108) >> 2]),
|
|
X(q[(a + 1124) >> 2], 4, q[(q[(a + 704) >> 2] + 108) >> 2]),
|
|
X(q[(a + 1128) >> 2], 4, q[(q[(a + 704) >> 2] + 108) >> 2]),
|
|
X(q[(a + 1144) >> 2], 4, q[(q[(a + 704) >> 2] + 112) >> 2]),
|
|
X(q[(a + 1148) >> 2], 4, q[(q[(a + 704) >> 2] + 112) >> 2]),
|
|
X(q[(a + 1152) >> 2], 4, q[(q[(a + 704) >> 2] + 112) >> 2]),
|
|
X(q[(a + 1168) >> 2], 4, q[(q[(a + 704) >> 2] + 116) >> 2]),
|
|
X(q[(a + 1172) >> 2], 4, q[(q[(a + 704) >> 2] + 120) >> 2]),
|
|
X(q[(a + 1176) >> 2], 4, q[(q[(a + 704) >> 2] + 120) >> 2]),
|
|
X(q[(a + 1180) >> 2], 4, q[(q[(a + 704) >> 2] + 120) >> 2]),
|
|
X(q[(a + 1184) >> 2], 4, q[(q[(a + 704) >> 2] + 124) >> 2]),
|
|
X(q[(a + 1188) >> 2], 4, q[(q[(a + 704) >> 2] + 124) >> 2]),
|
|
4 != (0 | Xa) &&
|
|
(X(
|
|
q[(a + 988) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 28) >> 2]
|
|
),
|
|
X(q[(a + 992) >> 2], 4, q[(q[(a + 704) >> 2] + 28) >> 2]),
|
|
X(
|
|
q[(a + 1024) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 32) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1028) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 32) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1044) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 36) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1048) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 36) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1108) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 128) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1112) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 128) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1116) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 128) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1132) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 132) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1136) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 132) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1140) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 132) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1156) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 136) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1160) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 136) >> 2]
|
|
),
|
|
X(
|
|
q[(a + 1164) >> 2],
|
|
4,
|
|
q[(q[(a + 704) >> 2] + 136) >> 2]
|
|
)));
|
|
}
|
|
|
|
function za(a, Za) {
|
|
var _a = 0,
|
|
lb = 0,
|
|
mb = 0,
|
|
ob = 0,
|
|
pb = 0,
|
|
rb = 0,
|
|
nb = (a + Za) | 0;
|
|
a: {
|
|
b: if (!(1 & (_a = q[(a + 4) >> 2]))) {
|
|
if (!(3 & _a)) break a;
|
|
if (
|
|
((Za = ((_a = q[a >> 2]) + Za) | 0),
|
|
(0 | (a = (a - _a) | 0)) != q[2092])
|
|
)
|
|
if (_a >>> 0 <= 255)
|
|
(mb = _a >>> 3),
|
|
(_a = q[(a + 8) >> 2]),
|
|
(0 | (lb = q[(a + 12) >> 2])) == (0 | _a) ?
|
|
((rb = q[2087] & dd(mb)), (q[2087] = rb)) :
|
|
((q[(_a + 12) >> 2] = lb),
|
|
(q[(lb + 8) >> 2] = _a));
|
|
else {
|
|
if (
|
|
((pb = q[(a + 24) >> 2]),
|
|
(0 | (_a = q[(a + 12) >> 2])) != (0 | a))
|
|
)
|
|
(lb = q[(a + 8) >> 2]),
|
|
(q[(lb + 12) >> 2] = _a),
|
|
(q[(_a + 8) >> 2] = lb);
|
|
else if (
|
|
(mb =
|
|
(mb = q[(lb = (a + 20) | 0) >> 2]) ||
|
|
q[(lb = (a + 16) | 0) >> 2])
|
|
) {
|
|
for (;
|
|
(ob = lb),
|
|
(mb = q[(lb = ((_a = mb) + 20) | 0) >> 2]) ||
|
|
((lb = (_a + 16) | 0),
|
|
(mb = q[(_a + 16) >> 2]));
|
|
|
|
);
|
|
q[ob >> 2] = 0;
|
|
} else _a = 0;
|
|
if (pb) {
|
|
lb = q[(a + 28) >> 2];
|
|
e: {
|
|
if (
|
|
q[(mb = (8652 + (lb << 2)) | 0) >> 2] ==
|
|
(0 | a)
|
|
) {
|
|
if ((q[mb >> 2] = _a)) break e;
|
|
(rb = q[2088] & dd(lb)), (q[2088] = rb);
|
|
break b;
|
|
}
|
|
if (!(q[
|
|
(pb +
|
|
(q[(pb + 16) >> 2] == (0 | a) ? 16 : 20)) >>
|
|
2
|
|
] = _a))
|
|
break b;
|
|
}
|
|
(q[(_a + 24) >> 2] = pb),
|
|
(lb = q[(a + 16) >> 2]) &&
|
|
((q[(_a + 16) >> 2] = lb),
|
|
(q[(lb + 24) >> 2] = _a)),
|
|
(lb = q[(a + 20) >> 2]) &&
|
|
((q[(_a + 20) >> 2] = lb),
|
|
(q[(lb + 24) >> 2] = _a));
|
|
}
|
|
}
|
|
else if (3 == (3 & (_a = q[(4 + nb) >> 2])))
|
|
return (
|
|
(q[2089] = Za),
|
|
(q[(4 + nb) >> 2] = -2 & _a),
|
|
(q[(a + 4) >> 2] = 1 | Za),
|
|
(q[nb >> 2] = Za)
|
|
);
|
|
}
|
|
f: {
|
|
if (!(2 & (_a = q[(4 + nb) >> 2]))) {
|
|
if (q[2093] == (0 | nb)) {
|
|
if (
|
|
((q[2093] = a),
|
|
(Za = (q[2090] + Za) | 0),
|
|
(q[2090] = Za),
|
|
(q[(a + 4) >> 2] = 1 | Za),
|
|
q[2092] != (0 | a))
|
|
)
|
|
break a;
|
|
return (q[2089] = 0), (q[2092] = 0);
|
|
}
|
|
if (q[2092] == (0 | nb))
|
|
return (
|
|
(q[2092] = a),
|
|
(Za = (q[2089] + Za) | 0),
|
|
(q[2089] = Za),
|
|
(q[(a + 4) >> 2] = 1 | Za),
|
|
(q[(a + Za) >> 2] = Za)
|
|
);
|
|
Za = ((-8 & _a) + Za) | 0;
|
|
g: if (_a >>> 0 <= 255)
|
|
(mb = _a >>> 3),
|
|
(_a = q[(8 + nb) >> 2]),
|
|
(0 | (lb = q[(12 + nb) >> 2])) == (0 | _a) ?
|
|
((rb = q[2087] & dd(mb)), (q[2087] = rb)) :
|
|
((q[(_a + 12) >> 2] = lb),
|
|
(q[(lb + 8) >> 2] = _a));
|
|
else {
|
|
if (
|
|
((pb = q[(24 + nb) >> 2]),
|
|
(0 | nb) != (0 | (_a = q[(12 + nb) >> 2])))
|
|
)
|
|
(lb = q[(8 + nb) >> 2]),
|
|
(q[(lb + 12) >> 2] = _a),
|
|
(q[(_a + 8) >> 2] = lb);
|
|
else if (
|
|
(mb =
|
|
(mb = q[(lb = (20 + nb) | 0) >> 2]) ||
|
|
q[(lb = (16 + nb) | 0) >> 2])
|
|
) {
|
|
for (;
|
|
(ob = lb),
|
|
(mb = q[(lb = ((_a = mb) + 20) | 0) >> 2]) ||
|
|
((lb = (_a + 16) | 0),
|
|
(mb = q[(_a + 16) >> 2]));
|
|
|
|
);
|
|
q[ob >> 2] = 0;
|
|
} else _a = 0;
|
|
if (pb) {
|
|
lb = q[(28 + nb) >> 2];
|
|
j: {
|
|
if (
|
|
q[(mb = (8652 + (lb << 2)) | 0) >> 2] ==
|
|
(0 | nb)
|
|
) {
|
|
if ((q[mb >> 2] = _a)) break j;
|
|
(rb = q[2088] & dd(lb)), (q[2088] = rb);
|
|
break g;
|
|
}
|
|
if (!(q[
|
|
(pb +
|
|
(q[(pb + 16) >> 2] == (0 | nb) ? 16 : 20)) >>
|
|
2
|
|
] = _a))
|
|
break g;
|
|
}
|
|
(q[(_a + 24) >> 2] = pb),
|
|
(lb = q[(16 + nb) >> 2]) &&
|
|
((q[(_a + 16) >> 2] = lb),
|
|
(q[(lb + 24) >> 2] = _a)),
|
|
(lb = q[(20 + nb) >> 2]) &&
|
|
((q[(_a + 20) >> 2] = lb),
|
|
(q[(lb + 24) >> 2] = _a));
|
|
}
|
|
}
|
|
if (
|
|
((q[(a + 4) >> 2] = 1 | Za),
|
|
(q[(a + Za) >> 2] = Za),
|
|
q[2092] != (0 | a))
|
|
)
|
|
break f;
|
|
return (q[2089] = Za);
|
|
}
|
|
(q[(4 + nb) >> 2] = -2 & _a),
|
|
(q[(a + 4) >> 2] = 1 | Za),
|
|
(q[(a + Za) >> 2] = Za);
|
|
}
|
|
if (Za >>> 0 <= 255)
|
|
return (
|
|
(Za = (8388 + ((_a = Za >>> 3) << 3)) | 0),
|
|
(_a =
|
|
(lb = q[2087]) & (_a = 1 << _a) ?
|
|
q[(Za + 8) >> 2] :
|
|
((q[2087] = _a | lb), Za)),
|
|
(q[(Za + 8) >> 2] = a),
|
|
(q[(_a + 12) >> 2] = a),
|
|
(q[(a + 12) >> 2] = Za),
|
|
(q[(a + 8) >> 2] = _a)
|
|
);
|
|
(q[(a + 16) >> 2] = 0),
|
|
(_a = q[(a + 20) >> 2] = 0),
|
|
(mb = Za >>> 8) &&
|
|
((_a = 31),
|
|
16777215 < Za >>> 0 ||
|
|
(_a =
|
|
(28 +
|
|
(((_a =
|
|
((((nb =
|
|
(mb <<= ob = ((mb + 1048320) >>> 16) & 8) <<
|
|
(_a = ((mb + 520192) >>> 16) & 4)) <<
|
|
(mb = ((245760 + nb) >>> 16) & 2)) >>>
|
|
15) -
|
|
(mb | _a | ob)) |
|
|
0) <<
|
|
1) |
|
|
((Za >>> (_a + 21)) & 1))) |
|
|
0)),
|
|
(mb = (8652 + ((q[((lb = a) + 28) >> 2] = _a) << 2)) | 0);
|
|
m: {
|
|
if ((lb = q[2088]) & (ob = 1 << _a)) {
|
|
for (
|
|
lb = Za << (31 == (0 | _a) ? 0 : (25 - (_a >>> 1)) | 0),
|
|
_a = q[mb >> 2];;
|
|
|
|
) {
|
|
if ((-8 & q[((mb = _a) + 4) >> 2]) == (0 | Za)) break m;
|
|
if (
|
|
((_a = lb >>> 29),
|
|
(lb <<= 1), !(_a = q[(16 + (ob = (mb + (4 & _a)) | 0)) >> 2]))
|
|
)
|
|
break;
|
|
}
|
|
q[(ob + 16) >> 2] = a;
|
|
} else(q[2088] = lb | ob),
|
|
(q[mb >> 2] = a);
|
|
return (
|
|
(q[(a + 24) >> 2] = mb),
|
|
(q[(a + 12) >> 2] = a),
|
|
(q[(a + 8) >> 2] = a)
|
|
);
|
|
}
|
|
(Za = q[(mb + 8) >> 2]),
|
|
(q[(Za + 12) >> 2] = a),
|
|
(q[(mb + 8) >> 2] = a),
|
|
(q[(a + 24) >> 2] = 0),
|
|
(q[(a + 12) >> 2] = mb),
|
|
(q[(a + 8) >> 2] = Za);
|
|
}
|
|
}
|
|
|
|
function Aa(a) {
|
|
var vb,
|
|
xb,
|
|
yb,
|
|
Ab,
|
|
Bb,
|
|
Cb,
|
|
sb,
|
|
wb,
|
|
Za = x(0),
|
|
tb = (x(0), 0),
|
|
ub = 0,
|
|
zb = (x(0), x(0), x(0), x(0), 0);
|
|
x(0), x(0);
|
|
a: {
|
|
b: {
|
|
if ((j(a), (ub = 2147483647 & (tb = b[0])))) {
|
|
if (!(ub >>> 0 < 2139095041))
|
|
return x(x(0.10000000149011612) + a);
|
|
if (1065353216 == (0 | ub))
|
|
return x(-1 < (0 | tb) ? 0.10000000149011612 : 10);
|
|
if (2139095040 == (0 | ub))
|
|
return x(-1 < (0 | tb) ? 0 : -a);
|
|
if (1073741824 == (0 | tb))
|
|
return x(0.010000000707805157);
|
|
if (1056964608 == (0 | tb)) return x(0.3162277638912201);
|
|
if (1291845633 <= ub >>> 0)
|
|
return x((0 | tb) < 0 ? H : 0);
|
|
if (
|
|
((vb = u[1701]),
|
|
(wb = x(x(1.600000023841858) - vb)),
|
|
(xb = x(x(1) / x(vb + x(1.600000023841858)))),
|
|
f(0, -4096 & (j((sb = x(wb * xb))), b[0])),
|
|
(Za = k()),
|
|
(yb = x(Za * Za)),
|
|
(Bb = u[1705]),
|
|
(vb = x(
|
|
xb *
|
|
x(
|
|
x(wb - x((Ab = Za) * x(3.099609375))) -
|
|
x(
|
|
Za *
|
|
x(
|
|
x(1.600000023841858) -
|
|
x(x(3.099609375) - vb)
|
|
)
|
|
)
|
|
)
|
|
)),
|
|
(xb = x(x(sb + Za) * vb)),
|
|
(Za = x(sb * sb)),
|
|
(wb = x(
|
|
xb +
|
|
x(
|
|
x(Za * Za) *
|
|
x(
|
|
x(
|
|
Za *
|
|
x(
|
|
x(
|
|
Za *
|
|
x(
|
|
x(
|
|
Za *
|
|
x(
|
|
x(
|
|
Za *
|
|
x(
|
|
x(
|
|
Za *
|
|
x(
|
|
0.20697501301765442
|
|
)
|
|
) +
|
|
x(
|
|
0.23066075146198273
|
|
)
|
|
)
|
|
) + x(0.2727281153202057)
|
|
)
|
|
) + x(0.3333333432674408)
|
|
)
|
|
) + x(0.4285714328289032)
|
|
)
|
|
) + x(0.6000000238418579)
|
|
)
|
|
)
|
|
)),
|
|
f(0, -4096 & (j(x(x(yb + x(3)) + wb)), b[0])),
|
|
(Za = k()),
|
|
(xb = x(Ab * Za)),
|
|
(sb = x(
|
|
x(vb * Za) + x(sb * x(wb - x(x(Za + x(-3)) - yb)))
|
|
)),
|
|
f(0, -4096 & (j(x(xb + sb)), b[0])),
|
|
(Za = k()),
|
|
(vb = x(Za * x(0.9619140625))),
|
|
(yb = x(
|
|
u[1703] +
|
|
x(
|
|
x(x(sb - x(Za - xb)) * x(0.9617967009544373)) +
|
|
x(Za * x(-0.00011736857413779944))
|
|
)
|
|
)),
|
|
f(0, -4096 & (j(x(x(Bb + x(vb + yb)) + x(-4))), b[0])),
|
|
(sb = k()),
|
|
f(0, -4096 & tb),
|
|
(wb = k()),
|
|
(Za = x(sb * wb)),
|
|
(a = x(
|
|
x(x(yb - x(x(x(sb - x(-4)) - Bb) - vb)) * a) +
|
|
x(x(a - wb) * sb)
|
|
)),
|
|
j((sb = x(Za + a))),
|
|
1124073473 <= (0 | (tb = b[0])))
|
|
)
|
|
break b;
|
|
d: {
|
|
if ((ub = 1124073472) == (0 | tb)) {
|
|
if (x(a + x(4.299566569443414e-8)) > x(sb - Za))
|
|
break b;
|
|
} else {
|
|
if (
|
|
((ub = 2147483647 & tb), !(
|
|
((a <= x(sb - Za)) ^ 1) |
|
|
(-1021968384 != (0 | tb))
|
|
) |
|
|
(1125515265 <= ub >>> 0))
|
|
)
|
|
break a;
|
|
if (ub >>> 0 < 1056964609) break d;
|
|
}
|
|
(zb =
|
|
((8388607 &
|
|
(ub =
|
|
((8388608 >>> ((ub >>> 23) - 126)) + tb) | 0)) |
|
|
8388608) >>>
|
|
(150 - (Cb = (ub >>> 23) & 255))),
|
|
(zb = (0 | tb) < 0 ? (0 - zb) | 0 : zb),
|
|
(Za = x(
|
|
Za - (f(0, ub & (-8388608 >> (Cb - 127))), k())
|
|
)),
|
|
j(x(a + Za)),
|
|
(tb = b[0]);
|
|
}
|
|
f(0, -32768 & tb),
|
|
(sb = k()),
|
|
(vb = x(sb * x(0.693145751953125))),
|
|
(sb = x(
|
|
x(sb * x(14286065379565116e-22)) +
|
|
x(x(a - x(sb - Za)) * x(0.6931471824645996))
|
|
)),
|
|
(a = x(vb + sb)),
|
|
(Za = x(a * a)),
|
|
(Za = x(
|
|
a -
|
|
x(
|
|
Za *
|
|
x(
|
|
x(
|
|
Za *
|
|
x(
|
|
x(
|
|
Za *
|
|
x(
|
|
x(
|
|
Za *
|
|
x(
|
|
x(
|
|
Za *
|
|
x(4.138136944220605e-8)
|
|
) +
|
|
x(-16533901998627698e-22)
|
|
)
|
|
) + x(661375597701408e-19)
|
|
)
|
|
) + x(-0.0027777778450399637)
|
|
)
|
|
) + x(0.1666666716337204)
|
|
)
|
|
)
|
|
)),
|
|
(Ab = x(x(a * Za) / x(Za + x(-2)))),
|
|
(Za = x(sb - x(a - vb))),
|
|
(a =
|
|
(0 |
|
|
(tb =
|
|
0 |
|
|
(j(
|
|
(a = x(x(a - x(Ab - x(Za + x(a * Za)))) + x(1)))
|
|
),
|
|
b[0] + (zb << 23)))) <=
|
|
8388607 ?
|
|
(function(a, Vk) {
|
|
var zl = 0;
|
|
return (
|
|
128 <= (0 | Vk) ?
|
|
((a = x(a * x(17014118346046923e22))),
|
|
(Vk =
|
|
(0 | (zl = (Vk + -127) | 0)) < 128 ?
|
|
zl :
|
|
((a = x(
|
|
a * x(17014118346046923e22)
|
|
)),
|
|
(((0 | Vk) < 381 ? Vk : 381) +
|
|
-254) |
|
|
0))) :
|
|
-127 < (0 | Vk) ||
|
|
((a = x(a * x(11754943508222875e-54))),
|
|
(Vk = -127 < (0 | (zl = (Vk + 126) | 0)) ?
|
|
zl :
|
|
((a = x(
|
|
a * x(11754943508222875e-54)
|
|
)),
|
|
((-378 < (0 | Vk) ? Vk : -378) +
|
|
252) |
|
|
0))),
|
|
x(
|
|
a *
|
|
(f(0, (1065353216 + (Vk << 23)) | 0), k())
|
|
)
|
|
);
|
|
})(a, zb) :
|
|
(f(0, tb), k())),
|
|
(a = x(x(1) * a));
|
|
} else a = x(1);
|
|
return a;
|
|
}
|
|
return x(H);
|
|
}
|
|
return x(0);
|
|
}
|
|
|
|
function Ba(a, Db) {
|
|
var Jb,
|
|
Eb,
|
|
Gb,
|
|
Fb = 0,
|
|
Hb = 0,
|
|
Ib = x(0);
|
|
if (
|
|
(j(Db), !(
|
|
(Gb = 2147483647 & (Eb = b[0])) >>> 0 <= 2139095040 &&
|
|
(j(a), (Fb = 2147483647 & (Hb = b[0])) >>> 0 < 2139095041)
|
|
))
|
|
)
|
|
return x(a + Db);
|
|
if (1065353216 == (0 | Eb)) return Ca(a);
|
|
Eb = (Jb = (Eb >>> 30) & 2) | (Hb >>> 31);
|
|
b: {
|
|
c: {
|
|
d: {
|
|
e: {
|
|
if (!Fb) {
|
|
switch ((Eb - 2) | 0) {
|
|
case 0:
|
|
break e;
|
|
case 1:
|
|
break;
|
|
default:
|
|
break d;
|
|
}
|
|
return x(-3.1415927410125732);
|
|
}
|
|
if (2139095040 != (0 | Gb)) {
|
|
if (!Gb |
|
|
!(
|
|
Fb >>> 0 <= (218103808 + Gb) >>> 0 &&
|
|
2139095040 != (0 | Fb)
|
|
)
|
|
)
|
|
break b;
|
|
if (
|
|
((a = Ib =
|
|
(Fb + 218103808) >>> 0 < Gb >>> 0 &&
|
|
((Ib = x(0)), Jb) ?
|
|
Ib :
|
|
Ca(x(y(x(a / Db))))),
|
|
Eb >>> 0 <= 2)
|
|
) {
|
|
switch ((Eb - 1) | 0) {
|
|
case 0:
|
|
return x(-a);
|
|
case 1:
|
|
break;
|
|
default:
|
|
break d;
|
|
}
|
|
return x(
|
|
x(3.1415927410125732) -
|
|
x(a + x(8.742277657347586e-8))
|
|
);
|
|
}
|
|
return x(
|
|
x(a + x(8.742277657347586e-8)) +
|
|
x(-3.1415927410125732)
|
|
);
|
|
}
|
|
if (2139095040 == (0 | Fb)) break c;
|
|
return u[(6784 + (Eb << 2)) >> 2];
|
|
}
|
|
a = x(3.1415927410125732);
|
|
}
|
|
return a;
|
|
}
|
|
return u[(6768 + (Eb << 2)) >> 2];
|
|
}
|
|
return x(
|
|
(0 | Hb) < 0 ? -1.5707963705062866 : 1.5707963705062866
|
|
);
|
|
}
|
|
|
|
function Ca(a) {
|
|
x(0);
|
|
var Kb,
|
|
Nb,
|
|
Ob,
|
|
Db,
|
|
Mb,
|
|
Lb = 0;
|
|
x(0), x(0), j(a);
|
|
a: {
|
|
if (1283457024 <= (Db = 2147483647 & (Mb = b[0])) >>> 0) {
|
|
if (2139095040 < Db >>> 0) break a;
|
|
return x(
|
|
(0 | Mb) < 0 ? -1.570796251296997 : 1.570796251296997
|
|
);
|
|
}
|
|
b: {
|
|
if (Db >>> 0 <= 1054867455) {
|
|
if (((Lb = -1), 964689920 <= Db >>> 0)) break b;
|
|
break a;
|
|
}
|
|
(a = x(y(a))),
|
|
(Lb =
|
|
Db >>> 0 <= 1066926079 ?
|
|
Db >>> 0 <= 1060110335 ?
|
|
((a = x(x(x(a + a) + x(-1)) / x(a + x(2)))), 0) :
|
|
((a = x(x(a + x(-1)) / x(a + x(1)))), 1) :
|
|
Db >>> 0 <= 1075576831 ?
|
|
((a = x(x(a + x(-1.5)) / x(x(a * x(1.5)) + x(1)))),
|
|
2) :
|
|
((a = x(x(-1) / a)), 3));
|
|
}
|
|
if (
|
|
((Db = Lb),
|
|
(Nb = x(a * a)),
|
|
(Kb = x(Nb * Nb)),
|
|
(Ob = x(
|
|
Kb *
|
|
x(
|
|
x(Kb * x(-0.106480173766613)) +
|
|
x(-0.19999158382415771)
|
|
)
|
|
)),
|
|
(Kb = x(
|
|
Nb *
|
|
x(
|
|
x(
|
|
Kb *
|
|
x(
|
|
x(Kb * x(0.06168760731816292)) +
|
|
x(0.14253635704517365)
|
|
)
|
|
) + x(0.333333283662796)
|
|
)
|
|
)),
|
|
(0 | Db) <= -1)
|
|
)
|
|
return x(a - x(a * x(Ob + Kb)));
|
|
(a = x(
|
|
u[(6736 + (Db <<= 2)) >> 2] -
|
|
x(x(x(a * x(Ob + Kb)) - u[(6752 + Db) >> 2]) - a)
|
|
)),
|
|
(a = (0 | Mb) < 0 ? x(-a) : a);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
function Da(a, Pb) {
|
|
var Ub,
|
|
Sb,
|
|
Tb,
|
|
Qb = 0,
|
|
Rb = 0;
|
|
return (
|
|
(L = Sb = (L - 16) | 0),
|
|
j(a),
|
|
(Qb = 2147483647 & (Tb = b[0])) >>> 0 <= 1305022426 ?
|
|
((v[Pb >> 3] =
|
|
(Ub = +a) +
|
|
-1.5707963109016418 *
|
|
(Rb =
|
|
0.6366197723675814 * Ub +
|
|
6755399441055744 -
|
|
6755399441055744) +
|
|
-1.5893254773528196e-8 * Rb),
|
|
(Qb = y(Rb) < 2147483648 ? ~~Rb : -2147483648)) :
|
|
2139095040 <= Qb >>> 0 ?
|
|
((v[Pb >> 3] = x(a - a)), (Qb = 0)) :
|
|
((Ub = Qb),
|
|
(v[(8 + Sb) >> 3] =
|
|
(f(
|
|
0,
|
|
(Ub - ((Qb = ((Qb >>> 23) - 150) | 0) << 23)) | 0
|
|
),
|
|
k())),
|
|
(Qb = (function(a, Il, Jl) {
|
|
var Nl,
|
|
Sl,
|
|
Wl,
|
|
Xl,
|
|
Zl,
|
|
_l,
|
|
Kl = 0,
|
|
Ll = 0,
|
|
Ml = 0,
|
|
Ol = 0,
|
|
Pl = 0,
|
|
Ql = 0,
|
|
Rl = 0,
|
|
Tl = 0,
|
|
Ul = 0,
|
|
Vl = 0,
|
|
Yl = 0;
|
|
if (
|
|
((L = Nl = (L - 560) | 0),
|
|
(Rl =
|
|
((Ll = Jl) +
|
|
w(
|
|
(Wl =
|
|
0 < (0 | (Jl = (((Jl + -3) | 0) / 24) | 0)) ?
|
|
Jl :
|
|
0), -24
|
|
)) |
|
|
0),
|
|
0 <= (0 | (Sl = q[972])))
|
|
)
|
|
for (
|
|
Ll = (Sl + 1) | 0, Jl = Wl;
|
|
(v[(((320 + Nl) | 0) + (Ml << 3)) >> 3] =
|
|
(0 | Jl) < 0 ? 0 : +q[(3904 + (Jl << 2)) >> 2]),
|
|
(Jl = (Jl + 1) | 0),
|
|
(0 | Ll) != (0 | (Ml = (Ml + 1) | 0));
|
|
|
|
);
|
|
for (Pl = (Rl + -24) | 0, Ll = 0;;) {
|
|
for (
|
|
Kl = Jl = 0;
|
|
(Kl +=
|
|
v[((Jl << 3) + a) >> 3] *
|
|
v[(((320 + Nl) | 0) + ((Ll - Jl) << 3)) >> 3]),
|
|
1 != (0 | (Jl = (Jl + 1) | 0));
|
|
|
|
);
|
|
if (
|
|
((v[((Ll << 3) + Nl) >> 3] = Kl),
|
|
(Jl = (0 | Ll) < (0 | Sl)),
|
|
(Ll = (Ll + 1) | 0), !Jl)
|
|
)
|
|
break;
|
|
}
|
|
(_l = (23 - Pl) | 0), (Xl = (24 - Pl) | 0), (Ll = Sl);
|
|
a: {
|
|
for (;;) {
|
|
if (
|
|
((Kl = v[((Ll << 3) + Nl) >> 3]), !(Ul = ((Jl = 0) | (Ml = Ll)) < 1))
|
|
)
|
|
for (;
|
|
(Ql = (((480 + Nl) | 0) + (Jl << 2)) | 0),
|
|
(Tl = Kl),
|
|
(Ol =
|
|
y((Kl *= 5.960464477539063e-8)) < 2147483648 ?
|
|
~~Kl :
|
|
-2147483648),
|
|
(Ol =
|
|
y((Tl += -16777216 * (Kl = 0 | Ol))) <
|
|
2147483648 ?
|
|
~~Tl :
|
|
-2147483648),
|
|
(q[Ql >> 2] = Ol),
|
|
(Kl =
|
|
v[(((Ml = (Ml + -1) | 0) << 3) + Nl) >> 3] +
|
|
Kl),
|
|
(0 | Ll) != (0 | (Jl = (Jl + 1) | 0));
|
|
|
|
);
|
|
(Kl = ja(Kl, Pl)),
|
|
(Kl =
|
|
(Kl += -8 * C(0.125 * Kl)) -
|
|
(0 |
|
|
(Ql =
|
|
y(Kl) < 2147483648 ? ~~Kl : -2147483648)));
|
|
e: {
|
|
f: {
|
|
g: {
|
|
if ((Yl = (0 | Pl) < 1)) {
|
|
if (Pl) break g;
|
|
Ol =
|
|
q[(476 + (((Ll << 2) + Nl) | 0)) >> 2] >>
|
|
23;
|
|
} else
|
|
(Ol =
|
|
q[
|
|
(476 + (Ml = ((Ll << 2) + Nl) | 0)) >> 2
|
|
]),
|
|
(Vl = Ml),
|
|
(Ml = (Ol - ((Jl = Ol >> Xl) << Xl)) | 0),
|
|
(Ql = (Jl + Ql) | 0),
|
|
(Ol = (q[(Vl + 476) >> 2] = Ml) >> _l);
|
|
if ((0 | Ol) < 1) break e;
|
|
break f;
|
|
}
|
|
if (((Ol = 2), !(0.5 <= Kl))) {
|
|
Ol = 0;
|
|
break e;
|
|
}
|
|
}
|
|
if (((Ml = Jl = 0), !Ul))
|
|
for (;;) {
|
|
(Ul =
|
|
q[
|
|
(Zl =
|
|
(((480 + Nl) | 0) + (Jl << 2)) | 0) >> 2
|
|
]),
|
|
(Vl = 16777215);
|
|
i: {
|
|
j: {
|
|
if (!Ml) {
|
|
if (!Ul) break j;
|
|
(Vl = 16777216), (Ml = 1);
|
|
}
|
|
q[Zl >> 2] = Vl - Ul;
|
|
break i;
|
|
}
|
|
Ml = 0;
|
|
}
|
|
if ((0 | Ll) == (0 | (Jl = (Jl + 1) | 0)))
|
|
break;
|
|
}
|
|
Yl ||
|
|
1 < (Jl = (Pl + -1) | 0) >>> 0 ||
|
|
(q[(476 + (Jl = ((Ll << 2) + Nl) | 0)) >> 2] =
|
|
Jl - 1 ?
|
|
8388607 & q[(Jl + 476) >> 2] :
|
|
4194303 & q[(Jl + 476) >> 2]),
|
|
(Ql = (Ql + 1) | 0),
|
|
2 == (0 | Ol) &&
|
|
((Kl = 1 - Kl), (Ol = 2), Ml) &&
|
|
(Kl -= ja(1, Pl));
|
|
}
|
|
if (0 != Kl) break;
|
|
if (!(((Ml = 0) | (Jl = Ll)) <= (0 | Sl))) {
|
|
for (;
|
|
(Ml =
|
|
q[
|
|
(((480 + Nl) | 0) +
|
|
((Jl = (Jl + -1) | 0) << 2)) >>
|
|
2
|
|
] | Ml),
|
|
(0 | Sl) < (0 | Jl);
|
|
|
|
);
|
|
if (Ml) {
|
|
for (
|
|
Rl = Pl;
|
|
(Rl = (Rl + -24) | 0), !q[
|
|
(((480 + Nl) | 0) +
|
|
((Ll = (Ll + -1) | 0) << 2)) >>
|
|
2
|
|
];
|
|
|
|
);
|
|
break a;
|
|
}
|
|
}
|
|
for (
|
|
Jl = 1;
|
|
(Jl = ((Ml = Jl) + 1) | 0), !q[(((480 + Nl) | 0) + ((Sl - Ml) << 2)) >> 2];
|
|
|
|
);
|
|
for (Ml = (Ll + Ml) | 0;;) {
|
|
for (
|
|
Ll = Ql = (Ll + 1) | 0,
|
|
v[(((320 + Nl) | 0) + (Ql << 3)) >> 3] =
|
|
q[(3904 + ((Wl + Ll) << 2)) >> 2],
|
|
Kl = Jl = 0;
|
|
(Kl +=
|
|
v[((Jl << 3) + a) >> 3] *
|
|
v[
|
|
(((320 + Nl) | 0) + ((Ql - Jl) << 3)) >> 3
|
|
]),
|
|
1 != (0 | (Jl = (Jl + 1) | 0));
|
|
|
|
);
|
|
if (
|
|
((v[((Ll << 3) + Nl) >> 3] = Kl), !((0 | Ll) < (0 | Ml)))
|
|
)
|
|
break;
|
|
}
|
|
Ll = Ml;
|
|
}
|
|
16777216 <= (Kl = ja(Kl, (0 - Pl) | 0)) ?
|
|
((a = (((480 + Nl) | 0) + (Ll << 2)) | 0),
|
|
(Tl = Kl),
|
|
(Jl =
|
|
y((Kl *= 5.960464477539063e-8)) < 2147483648 ?
|
|
~~Kl :
|
|
-2147483648),
|
|
(Ml =
|
|
y((Kl = Tl + -16777216 * (0 | Jl))) < 2147483648 ?
|
|
~~Kl :
|
|
-2147483648),
|
|
(q[a >> 2] = Ml),
|
|
(Ll = (Ll + 1) | 0)) :
|
|
((Jl = y(Kl) < 2147483648 ? ~~Kl : -2147483648),
|
|
(Rl = Pl)),
|
|
(q[(((480 + Nl) | 0) + (Ll << 2)) >> 2] = Jl);
|
|
}
|
|
if (((Kl = ja(1, Rl)), !((0 | Ll) <= -1))) {
|
|
for (
|
|
Jl = Ll;
|
|
(v[((Jl << 3) + Nl) >> 3] =
|
|
Kl * +q[(((480 + Nl) | 0) + (Jl << 2)) >> 2]),
|
|
(Kl *= 5.960464477539063e-8),
|
|
(a = 0 < (0 | Jl)),
|
|
(Jl = (Jl + -1) | 0),
|
|
a;
|
|
|
|
);
|
|
if (!((0 | Ll) <= -1))
|
|
for (Jl = Ll;;) {
|
|
for (
|
|
Pl = (Ll - (a = Jl)) | 0, Jl = Kl = 0;
|
|
(Kl +=
|
|
v[(6672 + (Jl << 3)) >> 3] *
|
|
v[(((a + Jl) << 3) + Nl) >> 3]), !((0 | Sl) <= (0 | Jl)) &&
|
|
((Rl = Jl >>> 0 < Pl >>> 0),
|
|
(Jl = (Jl + 1) | 0),
|
|
Rl);
|
|
|
|
);
|
|
if (
|
|
((v[(((160 + Nl) | 0) + (Pl << 3)) >> 3] = Kl),
|
|
(Jl = (a + -1) | 0), !(0 < (0 | a)))
|
|
)
|
|
break;
|
|
}
|
|
}
|
|
if (0 <= (Ll | (Kl = 0)))
|
|
for (;
|
|
(Kl += v[(((160 + Nl) | 0) + (Ll << 3)) >> 3]),
|
|
(a = 0 < (0 | Ll)),
|
|
(Ll = (Ll + -1) | 0),
|
|
a;
|
|
|
|
);
|
|
return (
|
|
(v[Il >> 3] = Ol ? -Kl : Kl),
|
|
(L = (560 + Nl) | 0),
|
|
7 & Ql
|
|
);
|
|
})((8 + Sb) | 0, Sb, Qb)),
|
|
(Rb = v[Sb >> 3]),
|
|
(0 | Tb) <= -1 ?
|
|
((v[Pb >> 3] = -Rb), (Qb = (0 - Qb) | 0)) :
|
|
(v[Pb >> 3] = Rb)),
|
|
(L = (16 + Sb) | 0),
|
|
Qb
|
|
);
|
|
}
|
|
|
|
function Ea(a, Pb) {
|
|
return a ?
|
|
(function(a, Il) {
|
|
a: {
|
|
if (a) {
|
|
if (Il >>> 0 <= 127) break a;
|
|
if (q[q[1789] >> 2]) {
|
|
if (Il >>> 0 <= 2047)
|
|
return (
|
|
(o[(a + 1) | 0] = (63 & Il) | 128),
|
|
(o[0 | a] = (Il >>> 6) | 192),
|
|
2
|
|
);
|
|
if (!(57344 != (-8192 & Il) && 55296 <= Il >>> 0))
|
|
return (
|
|
(o[(a + 2) | 0] = (63 & Il) | 128),
|
|
(o[0 | a] = (Il >>> 12) | 224),
|
|
(o[(a + 1) | 0] = ((Il >>> 6) & 63) | 128),
|
|
3
|
|
);
|
|
if ((Il + -65536) >>> 0 <= 1048575)
|
|
return (
|
|
(o[(a + 3) | 0] = (63 & Il) | 128),
|
|
(o[0 | a] = (Il >>> 18) | 240),
|
|
(o[(a + 2) | 0] = ((Il >>> 6) & 63) | 128),
|
|
(o[(a + 1) | 0] = ((Il >>> 12) & 63) | 128),
|
|
4
|
|
);
|
|
} else if (57216 == (-128 & Il)) break a;
|
|
(q[2086] = 25), (a = -1);
|
|
} else a = 1;
|
|
return a;
|
|
}
|
|
return (o[0 | a] = Il),
|
|
1;
|
|
})(a, Pb) :
|
|
0;
|
|
}
|
|
|
|
function Fa(a, Pb, Wb) {
|
|
var fc,
|
|
gc,
|
|
Xb = 0,
|
|
Yb = 0,
|
|
Zb = 0,
|
|
_b = 0,
|
|
$b = 0,
|
|
ac = 0,
|
|
bc = 0,
|
|
cc = 0,
|
|
dc = 0,
|
|
ec = r[(a + 4) | 0];
|
|
if (
|
|
((q[Pb >> 2] = 652),
|
|
(Yb = q[(a + 704) >> 2]),
|
|
1 <= (0 | (_b = q[Yb >> 2])))
|
|
) {
|
|
for (
|
|
$b = q[(a + 720) >> 2], bc = q[(a + 1072) >> 2];
|
|
(Zb =
|
|
((1 << q[(bc + (q[($b + (Xb << 2)) >> 2] << 2)) >> 2]) +
|
|
Zb) |
|
|
0),
|
|
(0 | _b) != (0 | (Xb = (Xb + 1) | 0));
|
|
|
|
);
|
|
Xb = Zb << 2;
|
|
}
|
|
if (
|
|
((q[(Pb + 4) >> 2] = w(_b, 12)),
|
|
(q[(Pb + 8) >> 2] = q[Yb >> 2] << 2),
|
|
(q[(Pb + 12) >> 2] = q[Yb >> 2] << 2),
|
|
(q[(Pb + 16) >> 2] = q[Yb >> 2] << 2),
|
|
(q[(Pb + 20) >> 2] = q[Yb >> 2] << 2),
|
|
(Zb = q[Yb >> 2]),
|
|
(q[(Pb + 28) >> 2] = Xb),
|
|
(q[(Pb + 24) >> 2] = Zb << 2),
|
|
(Zb = q[Yb >> 2]),
|
|
(q[(Pb + 40) >> 2] = Xb),
|
|
(q[(Pb + 36) >> 2] = Xb),
|
|
(q[(Pb + 32) >> 2] = Zb << 2),
|
|
(q[(Pb + 44) >> 2] = q[(Yb + 4) >> 2] << 5),
|
|
(q[(Pb + 48) >> 2] = q[(Yb + 4) >> 2] << 2),
|
|
(q[(Pb + 52) >> 2] = q[(Yb + 4) >> 2] << 2),
|
|
(q[(Pb + 56) >> 2] = q[(Yb + 4) >> 2] << 2),
|
|
(q[(Pb + 60) >> 2] = q[(Yb + 4) >> 2] << 4),
|
|
(q[(Pb + 64) >> 2] = q[(Yb + 4) >> 2] << 4),
|
|
1 <= ((Xb = 0) | (_b = q[(Yb + 8) >> 2])))
|
|
) {
|
|
for (
|
|
$b = q[(a + 780) >> 2],
|
|
bc = q[(a + 1072) >> 2],
|
|
dc = q[(a + 796) >> 2],
|
|
Zb = 0;
|
|
(ac =
|
|
(((15 + (q[((cc = Xb << 2) + dc) >> 2] << 3)) & -16) +
|
|
ac) |
|
|
0),
|
|
(Zb =
|
|
((1 << q[(bc + (q[($b + cc) >> 2] << 2)) >> 2]) + Zb) |
|
|
0),
|
|
(0 | _b) != (0 | (Xb = (Xb + 1) | 0));
|
|
|
|
);
|
|
Xb = Zb << 2;
|
|
}
|
|
if (
|
|
((q[(Pb + 68) >> 2] = w(_b, 24)),
|
|
(q[(Pb + 72) >> 2] = q[(Yb + 8) >> 2] << 2),
|
|
(q[(Pb + 76) >> 2] = q[(Yb + 8) >> 2] << 2),
|
|
(Zb = q[(Yb + 8) >> 2]),
|
|
(q[(Pb + 84) >> 2] = ac),
|
|
(q[(Pb + 80) >> 2] = Zb << 2),
|
|
(q[(Pb + 88) >> 2] = q[(Yb + 8) >> 2] << 4),
|
|
(q[(Pb + 92) >> 2] = q[(Yb + 8) >> 2] << 4),
|
|
(Zb = q[(Yb + 8) >> 2]),
|
|
(q[(Pb + 100) >> 2] = Xb),
|
|
(q[(Pb + 96) >> 2] = Zb << 2),
|
|
(Zb = q[(Yb + 8) >> 2]),
|
|
(q[(Pb + 140) >> 2] = Xb),
|
|
(q[(Pb + 136) >> 2] = Xb),
|
|
(q[(Pb + 132) >> 2] = Xb),
|
|
(q[(Pb + 128) >> 2] = Xb),
|
|
(q[(Pb + 124) >> 2] = Xb),
|
|
(q[(Pb + 120) >> 2] = Xb),
|
|
(q[(Pb + 116) >> 2] = Xb),
|
|
(q[(Pb + 112) >> 2] = Xb),
|
|
(q[(Pb + 108) >> 2] = Xb),
|
|
(q[(Pb + 104) >> 2] = Zb << 2),
|
|
(q[(Pb + 144) >> 2] = q[(Yb + 8) >> 2] << 2),
|
|
(q[(Pb + 148) >> 2] = q[(Yb + 8) >> 2] << 2),
|
|
(q[(Pb + 152) >> 2] = q[(Yb + 8) >> 2] << 2),
|
|
(q[(Pb + 156) >> 2] = q[(Yb + 8) >> 2] << 2),
|
|
(q[(Pb + 160) >> 2] = q[(Yb + 8) >> 2] << 2),
|
|
(q[(Pb + 164) >> 2] = q[(Yb + 8) >> 2] << 2),
|
|
1 <= ((Xb = ac = 0) | (_b = q[(Yb + 12) >> 2])))
|
|
) {
|
|
for (
|
|
$b = q[(a + 812) >> 2], bc = q[(a + 1072) >> 2], Zb = 0;
|
|
(Zb =
|
|
((1 << q[(bc + (q[($b + (Xb << 2)) >> 2] << 2)) >> 2]) +
|
|
Zb) |
|
|
0),
|
|
(0 | _b) != (0 | (Xb = (Xb + 1) | 0));
|
|
|
|
);
|
|
Xb = Zb << 2;
|
|
}
|
|
if (
|
|
((q[(Pb + 168) >> 2] = w(_b, 12)),
|
|
(q[(Pb + 172) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 176) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 180) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 184) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 188) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 192) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 196) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 200) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 204) >> 2] = q[(Yb + 12) >> 2] << 4),
|
|
(q[(Pb + 208) >> 2] = q[(Yb + 12) >> 2] << 4),
|
|
(Zb = q[(Yb + 12) >> 2]),
|
|
(q[(Pb + 216) >> 2] = Xb),
|
|
(q[(Pb + 212) >> 2] = Zb << 2),
|
|
(Zb = q[(Yb + 12) >> 2]),
|
|
(q[(Pb + 268) >> 2] = Xb),
|
|
(q[(Pb + 264) >> 2] = Xb),
|
|
(q[(Pb + 260) >> 2] = Xb),
|
|
(q[(Pb + 256) >> 2] = Xb),
|
|
(q[(Pb + 252) >> 2] = Xb),
|
|
(q[(Pb + 248) >> 2] = Xb),
|
|
(q[(Pb + 244) >> 2] = Xb),
|
|
(q[(Pb + 240) >> 2] = Xb),
|
|
(q[(Pb + 236) >> 2] = Xb),
|
|
(q[(Pb + 232) >> 2] = Xb),
|
|
(q[(Pb + 228) >> 2] = Xb),
|
|
(q[(Pb + 224) >> 2] = Xb),
|
|
(q[(Pb + 220) >> 2] = Zb << 2),
|
|
(q[(Pb + 272) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 276) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 280) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 284) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 288) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
(q[(Pb + 292) >> 2] = q[(Yb + 12) >> 2] << 2),
|
|
1 <= ((Xb = 0) | (Zb = q[(Yb + 16) >> 2])))
|
|
) {
|
|
for (
|
|
$b = q[(a + 852) >> 2],
|
|
bc = q[(a + 1072) >> 2],
|
|
dc = q[(a + 892) >> 2],
|
|
_b = 0;
|
|
(ac =
|
|
(((15 + (q[((cc = Xb << 2) + dc) >> 2] << 3)) & -16) +
|
|
ac) |
|
|
0),
|
|
(_b =
|
|
((1 << q[(bc + (q[($b + cc) >> 2] << 2)) >> 2]) + _b) |
|
|
0),
|
|
(0 | Zb) != (0 | (Xb = (Xb + 1) | 0));
|
|
|
|
);
|
|
Xb = _b << 2;
|
|
}
|
|
if (
|
|
((q[(Pb + 296) >> 2] = w(Zb, 20)),
|
|
(q[(Pb + 300) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(q[(Pb + 304) >> 2] = q[(Yb + 16) >> 2]),
|
|
(q[(Pb + 308) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(q[(Pb + 312) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(Zb = q[(Yb + 16) >> 2]),
|
|
(q[(Pb + 320) >> 2] = ac),
|
|
(q[(Pb + 316) >> 2] = Zb << 2),
|
|
(q[(Pb + 324) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(q[(Pb + 328) >> 2] = q[(Yb + 16) >> 2] << 4),
|
|
(q[(Pb + 332) >> 2] = q[(Yb + 16) >> 2] << 4),
|
|
(q[(Pb + 336) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(q[(Pb + 340) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(q[(Pb + 344) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(q[(Pb + 348) >> 2] = q[(Yb + 16) >> 2] << 4),
|
|
(q[(Pb + 352) >> 2] = q[(Yb + 16) >> 2] << 4),
|
|
(Zb = q[(Yb + 16) >> 2]),
|
|
(q[(Pb + 360) >> 2] = Xb),
|
|
(q[(Pb + 356) >> 2] = Zb << 2),
|
|
(Zb = q[(Yb + 16) >> 2]),
|
|
(q[(Pb + 404) >> 2] = Xb),
|
|
(q[(Pb + 400) >> 2] = Xb),
|
|
(q[(Pb + 396) >> 2] = Xb),
|
|
(q[(Pb + 392) >> 2] = Xb),
|
|
(q[(Pb + 388) >> 2] = Xb),
|
|
(q[(Pb + 384) >> 2] = Xb),
|
|
(q[(Pb + 380) >> 2] = Xb),
|
|
(q[(Pb + 376) >> 2] = Xb),
|
|
(q[(Pb + 372) >> 2] = Xb),
|
|
(q[(Pb + 368) >> 2] = Xb),
|
|
(q[(Pb + 364) >> 2] = Zb << 2),
|
|
(q[(Pb + 408) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(q[(Pb + 412) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(q[(Pb + 416) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(q[(Pb + 420) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(q[(Pb + 424) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
(q[(Pb + 428) >> 2] = q[(Yb + 16) >> 2] << 2),
|
|
($b = q[(a + 704) >> 2]),
|
|
(q[(Pb + 432) >> 2] = w(q[($b + 20) >> 2], 52)),
|
|
(q[(Pb + 436) >> 2] =
|
|
ec >>> (Xb = _b = 0) <= 3 ? q[($b + 20) >> 2] << 2 : 0),
|
|
(q[(Pb + 440) >> 2] = q[($b + 20) >> 2] << 2),
|
|
(q[(Pb + 444) >> 2] = w(q[($b + 52) >> 2], 28)),
|
|
1 <= (0 | (Yb = q[($b + 48) >> 2])))
|
|
) {
|
|
for (
|
|
Zb = q[(a + 1072) >> 2], ac = 0;
|
|
(ac = ((bc = q[(Zb + (Xb << 2)) >> 2]) + ac) | 0),
|
|
(_b = ((1 << bc) + _b) | 0),
|
|
(0 | Yb) != (0 | (Xb = (Xb + 1) | 0));
|
|
|
|
);
|
|
(Xb = _b << 2), (_b = ac << 2);
|
|
}
|
|
if (
|
|
((q[(Pb + 460) >> 2] = Xb),
|
|
(q[(Pb + 456) >> 2] = Xb),
|
|
(q[(Pb + 452) >> 2] = _b),
|
|
(q[(Pb + 448) >> 2] = w(Yb, 36)),
|
|
(q[(Pb + 500) >> 2] = w(q[($b + 72) >> 2], 28)),
|
|
1 <= ((ac = Xb = Zb = 0) | (bc = q[($b + 72) >> 2])))
|
|
) {
|
|
for (
|
|
dc = q[(a + 1224) >> 2],
|
|
cc = q[(a + 1220) >> 2],
|
|
gc = q[(a + 1212) >> 2],
|
|
_b = 0;
|
|
(_b =
|
|
(0 |
|
|
(fc =
|
|
(q[((Yb = ac << 2) + cc) >> 2] - q[(Yb + dc) >> 2]) |
|
|
0)) <
|
|
(0 | _b) ?
|
|
_b :
|
|
(1 + fc) | 0),
|
|
(Xb =
|
|
(0 | Xb) < (0 | (Yb = q[(Yb + gc) >> 2])) ? Yb : Xb),
|
|
(0 | bc) != (0 | (ac = (ac + 1) | 0));
|
|
|
|
);
|
|
(ac = Xb << 2), (Xb = _b << 2);
|
|
}
|
|
if (
|
|
((Yb = q[($b + 76) >> 2]),
|
|
(q[(Pb + 516) >> 2] = Xb),
|
|
(q[(Pb + 512) >> 2] = ac),
|
|
(q[(Pb + 508) >> 2] = Xb),
|
|
(q[(Pb + 504) >> 2] = Yb << 4),
|
|
1 <= (0 | (Yb = q[($b + 80) >> 2])))
|
|
) {
|
|
for (
|
|
Zb = q[(a + 1248) >> 2],
|
|
ac = q[(a + 1072) >> 2],
|
|
_b = Xb = 0;
|
|
(_b =
|
|
((1 << q[(ac + (q[(Zb + (Xb << 2)) >> 2] << 2)) >> 2]) +
|
|
_b) |
|
|
0),
|
|
(0 | Yb) != (0 | (Xb = (Xb + 1) | 0));
|
|
|
|
);
|
|
Zb = _b << 2;
|
|
}
|
|
if (
|
|
((q[(Pb + 520) >> 2] = w(Yb, 24)),
|
|
(q[(Pb + 524) >> 2] = q[($b + 80) >> 2] << 2),
|
|
(Yb = q[($b + 80) >> 2]),
|
|
(q[(Pb + 532) >> 2] = Zb),
|
|
(q[(Pb + 528) >> 2] = Yb << 2),
|
|
(Yb = q[($b + 80) >> 2]),
|
|
(q[(Pb + 544) >> 2] = Zb),
|
|
(q[(Pb + 540) >> 2] = Zb),
|
|
(q[(Pb + 536) >> 2] = Yb << 2),
|
|
(Yb = Pb),
|
|
4 <= ec >>> 0)
|
|
) {
|
|
if (
|
|
((q[(Pb + 464) >> 2] = w(q[($b + 120) >> 2], 20)),
|
|
(q[(Pb + 468) >> 2] = w(q[($b + 100) >> 2], 28)),
|
|
(Zb = Pb),
|
|
1 <= ((Xb = ac = 0) | (bc = q[($b + 104) >> 2])))
|
|
) {
|
|
for (
|
|
a = q[(a + 1104) >> 2], _b = 0;
|
|
(_b = (q[(a + (Xb << 2)) >> 2] + _b) | 0),
|
|
(0 | bc) != (0 | (Xb = (Xb + 1) | 0));
|
|
|
|
);
|
|
a = _b << 2;
|
|
} else a = 0;
|
|
(q[(Zb + 476) >> 2] = a),
|
|
(q[(Pb + 472) >> 2] = w(bc, 48)),
|
|
(q[(Pb + 484) >> 2] = w(q[($b + 108) >> 2], 12)),
|
|
(a = q[($b + 112) >> 2]),
|
|
(q[(Pb + 552) >> 2] = 0),
|
|
(q[(Pb + 492) >> 2] = w(a, 12)),
|
|
(a = 0);
|
|
} else {
|
|
if ((0 | (ac = q[($b + 20) >> 2])) < 1) _b = 0;
|
|
else
|
|
for (
|
|
bc = q[(a + 1060) >> 2],
|
|
dc = q[(a + 952) >> 2],
|
|
a = q[(a + 948) >> 2],
|
|
Zb = _b = 0;;
|
|
|
|
) {
|
|
if (1 <= (0 | (cc = q[((Xb = Zb << 2) + dc) >> 2])))
|
|
for (
|
|
cc =
|
|
((Xb = (bc + (q[(a + Xb) >> 2] << 2)) | 0) +
|
|
(cc << 2)) |
|
|
0;
|
|
(_b = (q[Xb >> 2] + _b) | 0),
|
|
(Xb = (Xb + 4) | 0) >>> 0 < cc >>> 0;
|
|
|
|
);
|
|
if ((0 | ac) == (0 | (Zb = (Zb + 1) | 0))) break;
|
|
}
|
|
(q[(Pb + 552) >> 2] = ac << 2),
|
|
(ac = q[($b + 20) >> 2] << 2),
|
|
(a = _b << 2);
|
|
}
|
|
for (
|
|
q[(Yb + 556) >> 2] = a,
|
|
q[(Pb + 548) >> 2] = ac,
|
|
4 < ec >>> 0 &&
|
|
((q[(Pb + 480) >> 2] = w(q[($b + 128) >> 2], 12)),
|
|
(q[(Pb + 488) >> 2] = w(q[($b + 132) >> 2], 12)),
|
|
(q[(Pb + 496) >> 2] = w(q[($b + 136) >> 2], 12))),
|
|
Xb = _b = 0;
|
|
(Xb =
|
|
((((Yb = q[(a = ((_b << 2) + Pb) | 0) >> 2]) + 15) & -16) +
|
|
(q[a >> 2] = Xb)) |
|
|
0),
|
|
140 != (0 | (_b = (_b + 1) | 0));
|
|
|
|
);
|
|
q[Wb >> 2] = Xb;
|
|
}
|
|
|
|
function Ga(a, Pb, Wb, hc) {
|
|
a: {
|
|
if (!(20 < Pb >>> 0 || 9 < (Pb = (Pb + -9) | 0) >>> 0)) {
|
|
switch ((Pb - 1) | 0) {
|
|
default: return (
|
|
(Pb = q[Wb >> 2]),
|
|
(q[Wb >> 2] = Pb + 4),
|
|
(q[a >> 2] = q[Pb >> 2])
|
|
);
|
|
case 0:
|
|
return (
|
|
(Pb = q[Wb >> 2]),
|
|
(q[Wb >> 2] = Pb + 4),
|
|
(Pb = q[Pb >> 2]),
|
|
(q[a >> 2] = Pb),
|
|
(q[(a + 4) >> 2] = Pb >> 31)
|
|
);
|
|
case 1:
|
|
return (
|
|
(Pb = q[Wb >> 2]),
|
|
(q[Wb >> 2] = Pb + 4),
|
|
(q[a >> 2] = q[Pb >> 2]),
|
|
(q[(a + 4) >> 2] = 0)
|
|
);
|
|
case 3:
|
|
return (
|
|
(Pb = q[Wb >> 2]),
|
|
(q[Wb >> 2] = Pb + 4),
|
|
(Pb = p[Pb >> 1]),
|
|
(q[a >> 2] = Pb),
|
|
(q[(a + 4) >> 2] = Pb >> 31)
|
|
);
|
|
case 4:
|
|
return (
|
|
(Pb = q[Wb >> 2]),
|
|
(q[Wb >> 2] = Pb + 4),
|
|
(q[a >> 2] = s[Pb >> 1]),
|
|
(q[(a + 4) >> 2] = 0)
|
|
);
|
|
case 5:
|
|
return (
|
|
(Pb = q[Wb >> 2]),
|
|
(q[Wb >> 2] = Pb + 4),
|
|
(Pb = o[0 | Pb]),
|
|
(q[a >> 2] = Pb),
|
|
(q[(a + 4) >> 2] = Pb >> 31)
|
|
);
|
|
case 6:
|
|
return (
|
|
(Pb = q[Wb >> 2]),
|
|
(q[Wb >> 2] = Pb + 4),
|
|
(q[a >> 2] = r[0 | Pb]),
|
|
(q[(a + 4) >> 2] = 0)
|
|
);
|
|
case 2:
|
|
case 7:
|
|
break a;
|
|
case 8:
|
|
}
|
|
n[hc](a, Wb);
|
|
}
|
|
return;
|
|
}
|
|
(Pb = (q[Wb >> 2] + 7) & -8),
|
|
(q[Wb >> 2] = Pb + 8),
|
|
(Wb = q[(Pb + 4) >> 2]),
|
|
(q[a >> 2] = q[Pb >> 2]),
|
|
(q[(a + 4) >> 2] = Wb);
|
|
}
|
|
|
|
function Ha(a) {
|
|
var Pb,
|
|
hc,
|
|
Wb = 0;
|
|
if (ha(o[q[a >> 2]]))
|
|
for (;
|
|
(Pb = q[a >> 2]),
|
|
(hc = o[0 | Pb]),
|
|
(q[a >> 2] = Pb + 1),
|
|
(Wb = (((w(Wb, 10) + hc) | 0) - 48) | 0),
|
|
ha(o[(Pb + 1) | 0]);
|
|
|
|
);
|
|
return Wb;
|
|
}
|
|
|
|
function Ia(a, ic, jc, kc, lc) {
|
|
var oc, mc;
|
|
(q[(204 + (L = mc = (L - 208) | 0)) >> 2] = jc),
|
|
ca((160 + mc) | (jc = 0), 0, 40),
|
|
(q[(200 + mc) >> 2] = q[(204 + mc) >> 2]),
|
|
(0 |
|
|
ra(
|
|
0,
|
|
ic,
|
|
(200 + mc) | 0,
|
|
(80 + mc) | 0,
|
|
(160 + mc) | 0,
|
|
kc,
|
|
lc
|
|
)) <
|
|
0 ||
|
|
((jc = 0 <= q[(a + 76) >> 2] ? 1 : jc),
|
|
(jc = q[a >> 2]),
|
|
o[(a + 74) | 0] <= 0 && (q[a >> 2] = -33 & jc),
|
|
(oc = 32 & jc),
|
|
q[(a + 48) >> 2] ?
|
|
ra(
|
|
a,
|
|
ic,
|
|
(200 + mc) | 0,
|
|
(80 + mc) | 0,
|
|
(160 + mc) | 0,
|
|
kc,
|
|
lc
|
|
) :
|
|
((q[(a + 48) >> 2] = 80),
|
|
(q[(a + 16) >> 2] = 80 + mc),
|
|
(q[(a + 28) >> 2] = mc),
|
|
(q[(a + 20) >> 2] = mc),
|
|
(jc = q[(a + 44) >> 2]),
|
|
ra(
|
|
a,
|
|
ic,
|
|
(200 + (q[(a + 44) >> 2] = mc)) | 0,
|
|
(80 + mc) | 0,
|
|
(160 + mc) | 0,
|
|
kc,
|
|
lc
|
|
),
|
|
jc &&
|
|
(n[q[(a + 36) >> 2]](a, 0, 0),
|
|
(q[(a + 48) >> 2] = 0),
|
|
(q[(a + 44) >> 2] = jc),
|
|
(q[(a + 28) >> 2] = 0),
|
|
(q[(a + 16) >> 2] = 0),
|
|
(q[(a + 20) >> 2] = 0))),
|
|
(q[a >> 2] = q[a >> 2] | oc)),
|
|
(L = (208 + mc) | 0);
|
|
}
|
|
|
|
function Ka(a, ic, pc) {
|
|
var rc, qc;
|
|
$((8 + (L = qc = (L - 160) | 0)) | 0, 3192, 144),
|
|
(q[(52 + qc) >> 2] = a),
|
|
(q[(28 + qc) >> 2] = a),
|
|
(q[(56 + qc) >> 2] = rc =
|
|
(rc = (-2 - a) | 0) >>> 0 < 256 ? rc : 256),
|
|
(q[(36 + qc) >> 2] = a = (a + rc) | 0),
|
|
(q[(24 + qc) >> 2] = a),
|
|
Ia((8 + qc) | 0, ic, pc, 11, 12),
|
|
rc &&
|
|
((a = q[(28 + qc) >> 2]),
|
|
(o[(a - ((0 | a) == q[(24 + qc) >> 2])) | 0] = 0)),
|
|
(L = (160 + qc) | 0);
|
|
}
|
|
|
|
function La(a, ic) {
|
|
var sc,
|
|
tc,
|
|
pc = 0,
|
|
pc = 0 != (0 | ic);
|
|
a: {
|
|
b: {
|
|
c: {
|
|
d: if (!(!ic | !(3 & a)))
|
|
for (;;) {
|
|
if (!r[0 | a]) break c;
|
|
if (
|
|
((a = (a + 1) | 0),
|
|
(pc = 0 != (0 | (ic = (ic + -1) | 0))), !ic)
|
|
)
|
|
break d;
|
|
if (!(3 & a)) break;
|
|
}
|
|
if (!pc) break b;
|
|
}
|
|
if (!r[0 | a]) break a;
|
|
e: {
|
|
if (4 <= ic >>> 0) {
|
|
for (
|
|
pc = ((pc = (ic + -4) | 0) - (sc = -4 & pc)) | 0,
|
|
sc = (4 + ((a + sc) | 0)) | 0;;
|
|
|
|
) {
|
|
if (
|
|
(-1 ^ (tc = q[a >> 2])) &
|
|
(tc + -16843009) &
|
|
-2139062144
|
|
)
|
|
break e;
|
|
if (
|
|
((a = (a + 4) | 0), !(3 < (ic = (ic + -4) | 0) >>> 0))
|
|
)
|
|
break;
|
|
}
|
|
(ic = pc), (a = sc);
|
|
}
|
|
if (!ic) break b;
|
|
}
|
|
for (;;) {
|
|
if (!r[0 | a]) break a;
|
|
if (((a = (a + 1) | 0), !(ic = (ic + -1) | 0))) break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
function Ma(a) {
|
|
var uc,
|
|
ic = 0;
|
|
if (!a) return 32;
|
|
if (!(1 & a))
|
|
for (;
|
|
(ic = (ic + 1) | 0), (uc = 2 & a), (a >>>= 1), !uc;);
|
|
return ic;
|
|
}
|
|
|
|
function Na(a, vc) {
|
|
var zc,
|
|
Ac,
|
|
Bc,
|
|
yc,
|
|
wc = 0,
|
|
xc = 0,
|
|
xc = 4;
|
|
L = yc = (L - 256) | 0;
|
|
a: if (!((0 | vc) < 2))
|
|
for (wc = q[(Bc = ((vc << 2) + a) | 0) >> 2] = yc;;) {
|
|
for (
|
|
$(wc, q[a >> 2], (zc = xc >>> 0 < 256 ? xc : 256)),
|
|
wc = 0; $(
|
|
q[(Ac = ((wc << 2) + a) | 0) >> 2],
|
|
q[(((wc = (wc + 1) | 0) << 2) + a) >> 2],
|
|
zc
|
|
),
|
|
(q[Ac >> 2] = q[Ac >> 2] + zc),
|
|
(0 | vc) != (0 | wc);
|
|
|
|
);
|
|
if (!(xc = (xc - zc) | 0)) break a;
|
|
wc = q[Bc >> 2];
|
|
}
|
|
L = (256 + yc) | 0;
|
|
}
|
|
|
|
function Oa(a) {
|
|
return (
|
|
Ma((q[a >> 2] + -1) | 0) ||
|
|
((a = Ma(q[(a + 4) >> 2])) ? (a + 32) | 0 : 0)
|
|
);
|
|
}
|
|
|
|
function Zc(a, $o) {
|
|
($o |= 0), (b[0] = a |= 0), (b[1] = $o);
|
|
}
|
|
|
|
function ad(a, $o, ap) {
|
|
return (function(a, $o, ap) {
|
|
var ep,
|
|
cp,
|
|
bp,
|
|
dp,
|
|
fp = w((cp = ap >>> 16), (bp = a >>> 16));
|
|
return (
|
|
(a =
|
|
((65535 &
|
|
(bp =
|
|
(((ep = w((dp = 65535 & ap), (a &= 65535))) >>> 16) +
|
|
w(bp, dp)) |
|
|
0)) +
|
|
w(a, cp)) |
|
|
0),
|
|
(M =
|
|
(((((fp + w($o, ap)) | 0) + (bp >>> 16)) | 0) +
|
|
(a >>> 16)) |
|
|
0),
|
|
(65535 & ep) | (a << 16)
|
|
);
|
|
})(a, $o, ap);
|
|
}
|
|
|
|
function bd(a, $o, ap) {
|
|
return (function(a, $o, ap) {
|
|
var np,
|
|
mp,
|
|
gp = 0,
|
|
hp = 0,
|
|
ip = 0,
|
|
jp = 0,
|
|
kp = 0,
|
|
lp = 0,
|
|
op = 0;
|
|
a: {
|
|
b: {
|
|
c: {
|
|
d: {
|
|
e: {
|
|
if (!(hp = $o))
|
|
return (
|
|
Zc(
|
|
(($o = a) -
|
|
w((a = ((a >>> 0) / (ap >>> 0)) | 0), ap)) |
|
|
0,
|
|
0
|
|
),
|
|
(M = 0),
|
|
a
|
|
);
|
|
if ((gp = ap)) {
|
|
if (!((jp = (gp + -1) | 0) & gp)) break e;
|
|
kp =
|
|
(0 - (jp = (((z(gp) + 33) | 0) - z(hp)) | 0)) |
|
|
0;
|
|
break c;
|
|
}
|
|
if (!a)
|
|
return (
|
|
Zc(
|
|
0,
|
|
(hp - w((a = ((hp >>> 0) / 0) | 0), 0)) | 0
|
|
),
|
|
(M = 0),
|
|
a
|
|
);
|
|
if ((gp = (32 - z(hp)) | 0) >>> 0 < 31) break d;
|
|
break b;
|
|
}
|
|
if ((Zc(a & jp, 0), 1 == (0 | gp))) break a;
|
|
return (
|
|
(ap =
|
|
31 &
|
|
(gp = gp ? (31 - z((gp + -1) ^ gp)) | 0 : 32)),
|
|
(a =
|
|
32 <= (63 & gp) >>> 0 ?
|
|
((hp = 0), $o >>> ap) :
|
|
((hp = $o >>> ap),
|
|
((((1 << ap) - 1) & $o) << (32 - ap)) |
|
|
(a >>> ap))),
|
|
(M = hp),
|
|
a
|
|
);
|
|
}
|
|
(jp = (gp + 1) | 0),
|
|
(kp = (63 - gp) | 0);
|
|
}
|
|
if (
|
|
((gp = $o),
|
|
(ip = 31 & (hp = 63 & jp)),
|
|
(ip =
|
|
32 <= hp >>> 0 ?
|
|
((hp = 0), gp >>> ip) :
|
|
((hp = gp >>> ip),
|
|
((((1 << ip) - 1) & gp) << (32 - ip)) |
|
|
(a >>> ip))),
|
|
(gp = 31 & (kp &= 63)),
|
|
32 <= kp >>> 0 ?
|
|
(($o = a << gp), (a = 0)) :
|
|
(($o =
|
|
(((1 << gp) - 1) & (a >>> (32 - gp))) |
|
|
($o << gp)),
|
|
(a <<= gp)),
|
|
jp)
|
|
)
|
|
for (
|
|
(kp = (ap + (gp = -1)) | 0) >>> 0 < 4294967295 &&
|
|
(gp = 0);
|
|
(ip =
|
|
((mp = lp = (ip << 1) | ($o >>> 31)) -
|
|
(np =
|
|
ap &
|
|
(lp =
|
|
(gp -
|
|
(((hp = (hp << 1) | (ip >>> 31)) +
|
|
(kp >>> 0 < lp >>> 0)) |
|
|
0)) >>
|
|
31))) |
|
|
0),
|
|
(hp = (hp - (mp >>> 0 < np >>> 0)) | 0),
|
|
($o = ($o << 1) | (a >>> 31)),
|
|
(a = op | (a << 1)),
|
|
(op = lp &= 1),
|
|
(jp = (jp + -1) | 0);
|
|
|
|
);
|
|
return (
|
|
Zc(ip, hp), (M = ($o << 1) | (a >>> 31)), lp | (a << 1)
|
|
);
|
|
}
|
|
Zc(a, $o),
|
|
($o = a = 0);
|
|
}
|
|
return (M = $o), a;
|
|
})(a, $o, ap);
|
|
}
|
|
|
|
function dd(a) {
|
|
var pp;
|
|
return (
|
|
(((-1 >>> (pp = 31 & a)) & -2) << pp) |
|
|
(((-1 << (a = (0 - a) & 31)) & -2) >>> a)
|
|
);
|
|
}
|
|
|
|
function N() {
|
|
return (buffer.byteLength / 65536) | 0;
|
|
}
|
|
})(H, I, J),
|
|
};
|
|
}
|
|
(l = null), b.wasmBinary && (F = b.wasmBinary);
|
|
var WebAssembly = {},
|
|
F = [];
|
|
"object" != typeof WebAssembly && E("no native wasm support detected");
|
|
var I,
|
|
J = new(function(a) {
|
|
var c = Array(16);
|
|
return (
|
|
(c.grow = function() {
|
|
17 <= c.length &&
|
|
B(
|
|
"Unable to grow wasm table. Use a higher value for RESERVED_FUNCTION_POINTERS or set ALLOW_TABLE_GROWTH."
|
|
),
|
|
c.push(null);
|
|
}),
|
|
(c.set = function(a, e) {
|
|
c[a] = e;
|
|
}),
|
|
(c.get = function(a) {
|
|
return c[a];
|
|
}),
|
|
c
|
|
);
|
|
})(),
|
|
K = !1;
|
|
|
|
function assert(a, c) {
|
|
a || B("Assertion failed: " + c);
|
|
}
|
|
var buffer,
|
|
M,
|
|
L,
|
|
N,
|
|
ha =
|
|
"undefined" != typeof TextDecoder ?
|
|
new TextDecoder("utf8") :
|
|
void 0;
|
|
|
|
function ia(a, c, d) {
|
|
var e = c + d;
|
|
for (d = c; a[d] && !(e <= d);) ++d;
|
|
if (16 < d - c && a.subarray && ha)
|
|
return ha.decode(a.subarray(c, d));
|
|
for (e = ""; c < d;) {
|
|
var g,
|
|
m,
|
|
f = a[c++];
|
|
128 & f ?
|
|
((g = 63 & a[c++]),
|
|
192 == (224 & f) ?
|
|
(e += String.fromCharCode(((31 & f) << 6) | g)) :
|
|
((m = 63 & a[c++]),
|
|
(f =
|
|
224 == (240 & f) ?
|
|
((15 & f) << 12) | (g << 6) | m :
|
|
((7 & f) << 18) |
|
|
(g << 12) |
|
|
(m << 6) |
|
|
(63 & a[c++])) < 65536 ?
|
|
(e += String.fromCharCode(f)) :
|
|
((f -= 65536),
|
|
(e += String.fromCharCode(
|
|
55296 | (f >> 10),
|
|
56320 | (1023 & f)
|
|
))))) :
|
|
(e += String.fromCharCode(f));
|
|
}
|
|
return e;
|
|
}
|
|
|
|
function ja(a, c) {
|
|
return a ? ia(L, a, c) : "";
|
|
}
|
|
|
|
function ka(a) {
|
|
return 0 < a % 65536 && (a += 65536 - (a % 65536)), a;
|
|
}
|
|
|
|
function la(a) {
|
|
(buffer = a),
|
|
(b.HEAP8 = M = new Int8Array(a)),
|
|
(b.HEAP16 = new Int16Array(a)),
|
|
(b.HEAP32 = N = new Int32Array(a)),
|
|
(b.HEAPU8 = L = new Uint8Array(a)),
|
|
(b.HEAPU16 = new Uint16Array(a)),
|
|
(b.HEAPU32 = new Uint32Array(a)),
|
|
(b.HEAPF32 = new Float32Array(a)),
|
|
(b.HEAPF64 = new Float64Array(a));
|
|
}
|
|
"undefined" != typeof TextDecoder && new TextDecoder("utf-16le");
|
|
var G = b.TOTAL_MEMORY || 16777216;
|
|
|
|
function O(a) {
|
|
for (; 0 < a.length;) {
|
|
var d,
|
|
c = a.shift();
|
|
"function" == typeof c
|
|
?
|
|
c() :
|
|
"number" == typeof(d = c.ea) ?
|
|
void 0 === c.da ?
|
|
b.dynCall_v(d) :
|
|
b.dynCall_vi(d, c.da) :
|
|
d(void 0 === c.da ? null : c.da);
|
|
}
|
|
}
|
|
(I =
|
|
b.wasmMemory ||
|
|
new(function() {
|
|
return {
|
|
buffer: new ArrayBuffer((G / 65536) * 65536),
|
|
grow: function(a) {
|
|
return ca(a);
|
|
},
|
|
};
|
|
})()) && (buffer = I.buffer),
|
|
buffer.byteLength,
|
|
la(buffer),
|
|
(N[2216] = 5251936);
|
|
var ra,
|
|
ma = [],
|
|
na = [],
|
|
oa = [],
|
|
pa = [],
|
|
P =
|
|
((Math.imul && -5 === Math.imul(4294967295, 5)) ||
|
|
(Math.imul = function(a, c) {
|
|
var d = 65535 & a,
|
|
e = 65535 & c;
|
|
return (d * e + (((a >>> 16) * e + d * (c >>> 16)) << 16)) | 0;
|
|
}),
|
|
Math.fround ||
|
|
((ra = new Float32Array(1)),
|
|
(Math.fround = function(a) {
|
|
return (ra[0] = a), ra[0];
|
|
})),
|
|
Math.clz32 ||
|
|
(Math.clz32 = function(a) {
|
|
var c = 32,
|
|
d = a >> 16;
|
|
return (
|
|
d && ((c -= 16), (a = d)),
|
|
(d = a >> 8) && ((c -= 8), (a = d)),
|
|
(d = a >> 4) && ((c -= 4), (a = d)),
|
|
(d = a >> 2) && ((c -= 2), (a = d)),
|
|
a >> 1 ? c - 2 : c - a
|
|
);
|
|
}),
|
|
Math.trunc ||
|
|
(Math.trunc = function(a) {
|
|
return a < 0 ? Math.ceil(a) : Math.floor(a);
|
|
}),
|
|
0),
|
|
Q = null,
|
|
U = null;
|
|
|
|
function B(a) {
|
|
throw (
|
|
(b.onAbort && b.onAbort(a),
|
|
D(a),
|
|
E(a),
|
|
(K = !0),
|
|
"abort(" + a + "). Build with -s ASSERTIONS=1 for more info.")
|
|
);
|
|
}
|
|
(b.preloadedImages = {}), (b.preloadedAudios = {});
|
|
var V = "data:application/octet-stream;base64,";
|
|
|
|
function W(a) {
|
|
return String.prototype.startsWith ?
|
|
a.startsWith(V) :
|
|
0 === a.indexOf(V);
|
|
}
|
|
var X = "_em_module.wasm";
|
|
|
|
function ta() {
|
|
try {
|
|
if (F) return new Uint8Array(F);
|
|
var a = z(X);
|
|
if (a) return a;
|
|
if (w) return w(X);
|
|
throw "both async and sync fetching of the wasm failed";
|
|
} catch (c) {
|
|
B(c);
|
|
}
|
|
}
|
|
W(X) || ((t = X), (X = b.locateFile ? b.locateFile(t, u) : u + t)),
|
|
na.push({
|
|
ea: function() {
|
|
va();
|
|
},
|
|
});
|
|
var wa = [null, [],
|
|
[]
|
|
],
|
|
xa = !1;
|
|
|
|
function C(a) {
|
|
for (var c = [], d = 0; d < a.length; d++) {
|
|
var e = a[d];
|
|
255 < e &&
|
|
(xa &&
|
|
assert(!1,
|
|
"Character code " +
|
|
e +
|
|
" (" +
|
|
String.fromCharCode(e) +
|
|
") at offset " +
|
|
d +
|
|
" not in 0x00-0xFF."
|
|
),
|
|
(e &= 255)),
|
|
c.push(String.fromCharCode(e));
|
|
}
|
|
return c.join("");
|
|
}
|
|
var ya =
|
|
"function" == typeof atob ?
|
|
atob :
|
|
function(a) {
|
|
var c = "",
|
|
d = 0;
|
|
a = a.replace(/[^A-Za-z0-9\+\/=]/g, "");
|
|
do {
|
|
var e =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=".indexOf(
|
|
a.charAt(d++)
|
|
),
|
|
f =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=".indexOf(
|
|
a.charAt(d++)
|
|
),
|
|
g =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=".indexOf(
|
|
a.charAt(d++)
|
|
),
|
|
m =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=".indexOf(
|
|
a.charAt(d++)
|
|
),
|
|
e = (e << 2) | (f >> 4),
|
|
f = ((15 & f) << 4) | (g >> 2),
|
|
h = ((3 & g) << 6) | m;
|
|
} while (
|
|
((c += String.fromCharCode(e)),
|
|
64 !== g && (c += String.fromCharCode(f)),
|
|
64 !== m && (c += String.fromCharCode(h)),
|
|
d < a.length)
|
|
);
|
|
return c;
|
|
};
|
|
|
|
function z(a) {
|
|
if (W(a)) {
|
|
if (((a = a.slice(V.length)), "boolean" == typeof r && r)) {
|
|
try {
|
|
var c = Buffer.from(a, "base64");
|
|
} catch (g) {
|
|
c = new Buffer(a, "base64");
|
|
}
|
|
var d = new Uint8Array(c.buffer, c.byteOffset, c.byteLength);
|
|
} else
|
|
try {
|
|
for (
|
|
var e = ya(a), f = new Uint8Array(e.length), c = 0; c < e.length;
|
|
++c
|
|
)
|
|
f[c] = e.charCodeAt(c);
|
|
d = f;
|
|
} catch (g) {
|
|
throw Error("Converting base64 string to bytes failed.");
|
|
}
|
|
return d;
|
|
}
|
|
}
|
|
var Y,
|
|
H = {
|
|
a: function(a, c, d) {
|
|
L.set(L.subarray(c, c + d), a);
|
|
},
|
|
b: function(a) {
|
|
if (2147418112 < a) return !1;
|
|
for (var c = Math.max(M.length, 16777216); c < a;)
|
|
c =
|
|
c <= 536870912 ?
|
|
ka(2 * c) :
|
|
Math.min(ka((3 * c + 2147483648) / 4), 2147418112);
|
|
a: {
|
|
try {
|
|
I.grow((c - buffer.byteLength + 65535) >> 16), la(I.buffer);
|
|
var d = 1;
|
|
break a;
|
|
} catch (e) {}
|
|
d = void 0;
|
|
}
|
|
return !!d;
|
|
},
|
|
c: function(a, c, d, e) {
|
|
try {
|
|
for (var f = 0, g = 0; g < d; g++) {
|
|
for (
|
|
var m = N[(c + 8 * g) >> 2],
|
|
h = N[(c + (8 * g + 4)) >> 2],
|
|
A = 0; A < h; A++
|
|
) {
|
|
var R = L[m + A],
|
|
S = wa[a];
|
|
0 === R || 10 === R ?
|
|
((1 === a ? D : E)(ia(S, 0)), (S.length = 0)) :
|
|
S.push(R);
|
|
}
|
|
f += h;
|
|
}
|
|
return (N[e >> 2] = f), 0;
|
|
} catch (T) {
|
|
return (
|
|
("undefined" != typeof FS && T instanceof FS.fa) || B(T), T.ga
|
|
);
|
|
}
|
|
},
|
|
memory: I,
|
|
table: J,
|
|
},
|
|
u = (function() {
|
|
function a(a) {
|
|
(b.asm = a.exports),
|
|
P--,
|
|
b.monitorRunDependencies && b.monitorRunDependencies(P),
|
|
0 == P &&
|
|
(null !== Q && (clearInterval(Q), (Q = null)), U) &&
|
|
((a = U), (U = null), a());
|
|
}
|
|
|
|
function c(c) {
|
|
a(c.instance);
|
|
}
|
|
|
|
function d(a) {
|
|
(F || (!p && !q) || "function" != typeof fetch ?
|
|
new Promise(function(a) {
|
|
a(ta());
|
|
}) :
|
|
fetch(X, { credentials: "same-origin" })
|
|
.then(function(a) {
|
|
if (a.ok) return a.arrayBuffer();
|
|
throw "failed to load wasm binary file at '" + X + "'";
|
|
})
|
|
.catch(ta)
|
|
)
|
|
.then(function() {
|
|
return {
|
|
then: function(a) {
|
|
a({ instance: new da() });
|
|
},
|
|
};
|
|
})
|
|
.then(a, function(a) {
|
|
E("failed to asynchronously prepare wasm: " + a), B(a);
|
|
});
|
|
}
|
|
var e = { env: H, wasi_unstable: H };
|
|
if (
|
|
(P++,
|
|
b.monitorRunDependencies && b.monitorRunDependencies(P),
|
|
b.instantiateWasm)
|
|
)
|
|
try {
|
|
return b.instantiateWasm(e, a);
|
|
} catch (f) {
|
|
return (
|
|
E("Module.instantiateWasm callback failed with error: " + f), !1
|
|
);
|
|
}
|
|
return (
|
|
F ||
|
|
"function" != typeof WebAssembly.instantiateStreaming ||
|
|
W(X) ||
|
|
"function" != typeof fetch ?
|
|
d(c) :
|
|
fetch(X, { credentials: "same-origin" }).then(function(a) {
|
|
return WebAssembly.instantiateStreaming(a, e).then(
|
|
c,
|
|
function(a) {
|
|
E("wasm streaming compile failed: " + a),
|
|
E("falling back to ArrayBuffer instantiation"),
|
|
d(c);
|
|
}
|
|
);
|
|
}), {}
|
|
);
|
|
})(),
|
|
va =
|
|
((b.asm = u),
|
|
(b.___wasm_call_ctors = function() {
|
|
return b.asm.d.apply(null, arguments);
|
|
})),
|
|
Aa =
|
|
((b._csmGetVersion = function() {
|
|
return b.asm.e.apply(null, arguments);
|
|
}),
|
|
(b._csmGetLatestMocVersion = function() {
|
|
return b.asm.f.apply(null, arguments);
|
|
}),
|
|
(b._csmGetMocVersion = function() {
|
|
return b.asm.g.apply(null, arguments);
|
|
}),
|
|
(b._csmHasMocConsistency = function() {
|
|
return b.asm.h.apply(null, arguments);
|
|
}),
|
|
(b._csmSetLogFunction = function() {
|
|
return b.asm.i.apply(null, arguments);
|
|
}),
|
|
(b._csmReviveMocInPlace = function() {
|
|
return b.asm.j.apply(null, arguments);
|
|
}),
|
|
(b._csmReadCanvasInfo = function() {
|
|
return b.asm.k.apply(null, arguments);
|
|
}),
|
|
(b._csmGetSizeofModel = function() {
|
|
return b.asm.l.apply(null, arguments);
|
|
}),
|
|
(b._csmInitializeModelInPlace = function() {
|
|
return b.asm.m.apply(null, arguments);
|
|
}),
|
|
(b._csmUpdateModel = function() {
|
|
return b.asm.n.apply(null, arguments);
|
|
}),
|
|
(b._csmGetParameterCount = function() {
|
|
return b.asm.o.apply(null, arguments);
|
|
}),
|
|
(b._csmGetParameterIds = function() {
|
|
return b.asm.p.apply(null, arguments);
|
|
}),
|
|
(b._csmGetParameterTypes = function() {
|
|
return b.asm.q.apply(null, arguments);
|
|
}),
|
|
(b._csmGetParameterMinimumValues = function() {
|
|
return b.asm.r.apply(null, arguments);
|
|
}),
|
|
(b._csmGetParameterMaximumValues = function() {
|
|
return b.asm.s.apply(null, arguments);
|
|
}),
|
|
(b._csmGetParameterDefaultValues = function() {
|
|
return b.asm.t.apply(null, arguments);
|
|
}),
|
|
(b._csmGetParameterValues = function() {
|
|
return b.asm.u.apply(null, arguments);
|
|
}),
|
|
(b._csmGetPartCount = function() {
|
|
return b.asm.v.apply(null, arguments);
|
|
}),
|
|
(b._csmGetPartIds = function() {
|
|
return b.asm.w.apply(null, arguments);
|
|
}),
|
|
(b._csmGetPartOpacities = function() {
|
|
return b.asm.x.apply(null, arguments);
|
|
}),
|
|
(b._csmGetPartParentPartIndices = function() {
|
|
return b.asm.y.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableCount = function() {
|
|
return b.asm.z.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableIds = function() {
|
|
return b.asm.A.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableConstantFlags = function() {
|
|
return b.asm.B.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableDynamicFlags = function() {
|
|
return b.asm.C.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableTextureIndices = function() {
|
|
return b.asm.D.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableDrawOrders = function() {
|
|
return b.asm.E.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableRenderOrders = function() {
|
|
return b.asm.F.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableOpacities = function() {
|
|
return b.asm.G.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableMaskCounts = function() {
|
|
return b.asm.H.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableMasks = function() {
|
|
return b.asm.I.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableVertexCounts = function() {
|
|
return b.asm.J.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableVertexPositions = function() {
|
|
return b.asm.K.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableVertexUvs = function() {
|
|
return b.asm.L.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableIndexCounts = function() {
|
|
return b.asm.M.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableIndices = function() {
|
|
return b.asm.N.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableMultiplyColors = function() {
|
|
return b.asm.O.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableScreenColors = function() {
|
|
return b.asm.P.apply(null, arguments);
|
|
}),
|
|
(b._csmGetDrawableParentPartIndices = function() {
|
|
return b.asm.Q.apply(null, arguments);
|
|
}),
|
|
(b._csmResetDrawableDynamicFlags = function() {
|
|
return b.asm.R.apply(null, arguments);
|
|
}),
|
|
(b._csmGetParameterKeyCounts = function() {
|
|
return b.asm.S.apply(null, arguments);
|
|
}),
|
|
(b._csmGetParameterKeyValues = function() {
|
|
return b.asm.T.apply(null, arguments);
|
|
}),
|
|
(b._csmMallocMoc = function() {
|
|
return b.asm.U.apply(null, arguments);
|
|
}),
|
|
(b._csmMallocModelAndInitialize = function() {
|
|
return b.asm.V.apply(null, arguments);
|
|
}),
|
|
(b._csmMalloc = function() {
|
|
return b.asm.W.apply(null, arguments);
|
|
}),
|
|
(b._csmFree = function() {
|
|
return b.asm.X.apply(null, arguments);
|
|
}),
|
|
(b._csmInitializeAmountOfMemory = function() {
|
|
return b.asm.Y.apply(null, arguments);
|
|
}),
|
|
(b.stackSave = function() {
|
|
return b.asm.Z.apply(null, arguments);
|
|
})),
|
|
Ba = (b.stackAlloc = function() {
|
|
return b.asm._.apply(null, arguments);
|
|
}),
|
|
Ca = (b.stackRestore = function() {
|
|
return b.asm.$.apply(null, arguments);
|
|
}),
|
|
ca = (b.__growWasmMemory = function() {
|
|
return b.asm.aa.apply(null, arguments);
|
|
});
|
|
|
|
function Z() {
|
|
function a() {
|
|
if (!Y && ((Y = !0), !K)) {
|
|
if (
|
|
(O(na),
|
|
O(oa),
|
|
b.onRuntimeInitialized && b.onRuntimeInitialized(),
|
|
b.postRun)
|
|
)
|
|
for (
|
|
"function" == typeof b.postRun && (b.postRun = [b.postRun]); b.postRun.length;
|
|
|
|
) {
|
|
var a = b.postRun.shift();
|
|
pa.unshift(a);
|
|
}
|
|
O(pa);
|
|
}
|
|
}
|
|
if (!(0 < P)) {
|
|
if (b.preRun)
|
|
for (
|
|
"function" == typeof b.preRun && (b.preRun = [b.preRun]); b.preRun.length;
|
|
|
|
)
|
|
!(function() {
|
|
var a = b.preRun.shift();
|
|
ma.unshift(a);
|
|
})();
|
|
O(ma),
|
|
0 < P ||
|
|
(b.setStatus ?
|
|
(b.setStatus("Running..."),
|
|
setTimeout(function() {
|
|
setTimeout(function() {
|
|
b.setStatus("");
|
|
}, 1),
|
|
a();
|
|
}, 1)) :
|
|
a());
|
|
}
|
|
}
|
|
if (
|
|
((b.dynCall_vi = function() {
|
|
return b.asm.ba.apply(null, arguments);
|
|
}),
|
|
(b.asm = u),
|
|
(b.ccall = function(a, c, d, e) {
|
|
var f = {
|
|
string: function(a) {
|
|
var c = 0;
|
|
if (null != a && 0 !== a) {
|
|
var d = 1 + (a.length << 2),
|
|
e = (c = Ba(d)),
|
|
f = L;
|
|
if (0 < d) {
|
|
for (var d = e + d - 1, g = 0; g < a.length; ++g) {
|
|
var k = a.charCodeAt(g);
|
|
if (
|
|
(k =
|
|
55296 <= k && k <= 57343 ?
|
|
(65536 + ((1023 & k) << 10)) |
|
|
(1023 & a.charCodeAt(++g)) :
|
|
k) <= 127
|
|
) {
|
|
if (d <= e) break;
|
|
f[e++] = k;
|
|
} else {
|
|
if (k <= 2047) {
|
|
if (d <= e + 1) break;
|
|
f[e++] = 192 | (k >> 6);
|
|
} else {
|
|
if (k <= 65535) {
|
|
if (d <= e + 2) break;
|
|
f[e++] = 224 | (k >> 12);
|
|
} else {
|
|
if (d <= e + 3) break;
|
|
(f[e++] = 240 | (k >> 18)),
|
|
(f[e++] = 128 | ((k >> 12) & 63));
|
|
}
|
|
f[e++] = 128 | ((k >> 6) & 63);
|
|
}
|
|
f[e++] = 128 | (63 & k);
|
|
}
|
|
}
|
|
f[e] = 0;
|
|
}
|
|
}
|
|
return c;
|
|
},
|
|
array: function(a) {
|
|
var c = Ba(a.length);
|
|
return M.set(a, c), c;
|
|
},
|
|
},
|
|
g = (function(a) {
|
|
var c = b["_" + a];
|
|
return (
|
|
assert(
|
|
c,
|
|
"Cannot call unknown function " +
|
|
a +
|
|
", make sure it is exported"
|
|
),
|
|
c
|
|
);
|
|
})(a),
|
|
m = [];
|
|
if (((a = 0), e))
|
|
for (var h = 0; h < e.length; h++) {
|
|
var A = f[d[h]];
|
|
A ? (0 === a && (a = Aa()), (m[h] = A(e[h]))) : (m[h] = e[h]);
|
|
}
|
|
return (
|
|
(d = (function(a) {
|
|
return "string" === c ? ja(a) : "boolean" === c ? !!a : a;
|
|
})((d = g.apply(null, m)))),
|
|
0 !== a && Ca(a),
|
|
d
|
|
);
|
|
}),
|
|
(b.UTF8ToString = ja),
|
|
(b.addFunction = function(a, c) {
|
|
var d = J.length;
|
|
try {
|
|
J.grow(1);
|
|
} catch (e) {
|
|
if (!e instanceof RangeError) throw e;
|
|
throw "Unable to grow wasm table. Use a higher value for RESERVED_FUNCTION_POINTERS or set ALLOW_TABLE_GROWTH.";
|
|
}
|
|
try {
|
|
J.set(d, a);
|
|
} catch (e) {
|
|
if (!e instanceof TypeError) throw e;
|
|
assert(void 0 !== c, "Missing signature argument to addFunction"),
|
|
J.set(d, a);
|
|
}
|
|
return d;
|
|
}),
|
|
(b.then = function(a) {
|
|
var c;
|
|
return (
|
|
Y ?
|
|
a(b) :
|
|
((c = b.onRuntimeInitialized),
|
|
(b.onRuntimeInitialized = function() {
|
|
c && c(), a(b);
|
|
})),
|
|
b
|
|
);
|
|
}),
|
|
(U = function Da() {
|
|
Y || Z(), Y || (U = Da);
|
|
}),
|
|
(b.run = Z),
|
|
b.preInit)
|
|
)
|
|
for (
|
|
"function" == typeof b.preInit && (b.preInit = [b.preInit]); 0 < b.preInit.length;
|
|
|
|
)
|
|
b.preInit.pop()();
|
|
return Z(), _em_module;
|
|
}),
|
|
_em =
|
|
("object" == typeof exports && "object" == typeof module ?
|
|
(module.exports = _em_module) :
|
|
"function" == typeof define && define.amd ?
|
|
define([], function() {
|
|
return _em_module;
|
|
}) :
|
|
"object" == typeof exports && (exports._em_module = _em_module),
|
|
_em_module());
|
|
})((Live2DCubismCore = Live2DCubismCore || {}));
|
|
window.Live2DCubismCore = Live2DCubismCore; |