Add mini web demo
This commit is contained in:
43
demo/src/components/Stage.tsx
Normal file
43
demo/src/components/Stage.tsx
Normal file
@@ -0,0 +1,43 @@
|
||||
import React, { useContext } from "react";
|
||||
import * as _ from "underscore";
|
||||
import Tool from "./Tool";
|
||||
import { modelInputProps } from "./helpers/Interfaces";
|
||||
import AppContext from "./hooks/createContext";
|
||||
|
||||
const Stage = () => {
|
||||
const {
|
||||
clicks: [, setClicks],
|
||||
image: [image],
|
||||
} = useContext(AppContext)!;
|
||||
|
||||
const getClick = (x: number, y: number): modelInputProps => {
|
||||
const clickType = 1;
|
||||
return { x, y, clickType };
|
||||
};
|
||||
|
||||
// Get mouse position and scale the (x, y) coordinates back to the natural
|
||||
// scale of the image. Update the state of clicks with setClicks to trigger
|
||||
// the ONNX model to run and generate a new mask via a useEffect in App.tsx
|
||||
const handleMouseMove = _.throttle((e: any) => {
|
||||
let el = e.nativeEvent.target;
|
||||
const rect = el.getBoundingClientRect();
|
||||
let x = e.clientX - rect.left;
|
||||
let y = e.clientY - rect.top;
|
||||
const imageScale = image ? image.width / el.offsetWidth : 1;
|
||||
x *= imageScale;
|
||||
y *= imageScale;
|
||||
const click = getClick(x, y);
|
||||
if (click) setClicks([click]);
|
||||
}, 15);
|
||||
|
||||
const flexCenterClasses = "flex items-center justify-center";
|
||||
return (
|
||||
<div className={`${flexCenterClasses} w-full h-full`}>
|
||||
<div className={`${flexCenterClasses} relative w-[90%] h-[90%]`}>
|
||||
<Tool handleMouseMove={handleMouseMove} />
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
export default Stage;
|
||||
67
demo/src/components/Tool.tsx
Normal file
67
demo/src/components/Tool.tsx
Normal file
@@ -0,0 +1,67 @@
|
||||
import React, { useContext, useEffect, useState } from "react";
|
||||
import AppContext from "./hooks/createContext";
|
||||
import { ToolProps } from "./helpers/Interfaces";
|
||||
import * as _ from "underscore";
|
||||
|
||||
const Tool = ({ handleMouseMove }: ToolProps) => {
|
||||
const {
|
||||
image: [image],
|
||||
maskImg: [maskImg, setMaskImg],
|
||||
} = useContext(AppContext)!;
|
||||
|
||||
// Determine if we should shrink or grow the images to match the
|
||||
// width or the height of the page and setup a ResizeObserver to
|
||||
// monitor changes in the size of the page
|
||||
const [shouldFitToWidth, setShouldFitToWidth] = useState(true);
|
||||
const bodyEl = document.body;
|
||||
const fitToPage = () => {
|
||||
if (!image) return;
|
||||
const imageAspectRatio = image.width / image.height;
|
||||
const screenAspectRatio = window.innerWidth / window.innerHeight;
|
||||
setShouldFitToWidth(imageAspectRatio > screenAspectRatio);
|
||||
};
|
||||
const resizeObserver = new ResizeObserver((entries) => {
|
||||
for (const entry of entries) {
|
||||
if (entry.target === bodyEl) {
|
||||
fitToPage();
|
||||
}
|
||||
}
|
||||
});
|
||||
useEffect(() => {
|
||||
fitToPage();
|
||||
resizeObserver.observe(bodyEl);
|
||||
return () => {
|
||||
resizeObserver.unobserve(bodyEl);
|
||||
};
|
||||
}, [image]);
|
||||
|
||||
const imageClasses = "";
|
||||
const maskImageClasses = `absolute opacity-40 pointer-events-none`;
|
||||
|
||||
// Render the image and the predicted mask image on top
|
||||
return (
|
||||
<>
|
||||
{image && (
|
||||
<img
|
||||
onMouseMove={handleMouseMove}
|
||||
onMouseOut={() => _.defer(() => setMaskImg(null))}
|
||||
onTouchStart={handleMouseMove}
|
||||
src={image.src}
|
||||
className={`${
|
||||
shouldFitToWidth ? "w-full" : "h-full"
|
||||
} ${imageClasses}`}
|
||||
></img>
|
||||
)}
|
||||
{maskImg && (
|
||||
<img
|
||||
src={maskImg.src}
|
||||
className={`${
|
||||
shouldFitToWidth ? "w-full" : "h-full"
|
||||
} ${maskImageClasses}`}
|
||||
></img>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
export default Tool;
|
||||
23
demo/src/components/helpers/Interfaces.tsx
Normal file
23
demo/src/components/helpers/Interfaces.tsx
Normal file
@@ -0,0 +1,23 @@
|
||||
import { Tensor } from "onnxruntime-web";
|
||||
|
||||
export interface modelScaleProps {
|
||||
samScale: number;
|
||||
height: number;
|
||||
width: number;
|
||||
}
|
||||
|
||||
export interface modelInputProps {
|
||||
x: number;
|
||||
y: number;
|
||||
clickType: number;
|
||||
}
|
||||
|
||||
export interface modeDataProps {
|
||||
clicks?: Array<modelInputProps>;
|
||||
tensor: Tensor;
|
||||
modelScale: modelScaleProps;
|
||||
}
|
||||
|
||||
export interface ToolProps {
|
||||
handleMouseMove: (e: any) => void;
|
||||
}
|
||||
43
demo/src/components/helpers/maskUtils.tsx
Normal file
43
demo/src/components/helpers/maskUtils.tsx
Normal file
@@ -0,0 +1,43 @@
|
||||
// Functions for handling mask output from the ONNX model
|
||||
|
||||
// Convert the onnx model mask prediction to ImageData
|
||||
function arrayToImageData(input: any, width: number, height: number) {
|
||||
const [r, g, b, a] = [0, 114, 189, 255]; // the masks's blue color
|
||||
const arr = new Uint8ClampedArray(4 * width * height).fill(0);
|
||||
for (let i = 0; i < input.length; i++) {
|
||||
|
||||
// Threshold the onnx model mask prediction at 0.0
|
||||
// This is equivalent to thresholding the mask using predictor.model.mask_threshold
|
||||
// in python
|
||||
if (input[i] > 0.0) {
|
||||
arr[4 * i + 0] = r;
|
||||
arr[4 * i + 1] = g;
|
||||
arr[4 * i + 2] = b;
|
||||
arr[4 * i + 3] = a;
|
||||
}
|
||||
}
|
||||
return new ImageData(arr, height, width);
|
||||
}
|
||||
|
||||
// Use a Canvas element to produce an image from ImageData
|
||||
function imageDataToImage(imageData: ImageData) {
|
||||
const canvas = imageDataToCanvas(imageData);
|
||||
const image = new Image();
|
||||
image.src = canvas.toDataURL();
|
||||
return image;
|
||||
}
|
||||
|
||||
// Canvas elements can be created from ImageData
|
||||
function imageDataToCanvas(imageData: ImageData) {
|
||||
const canvas = document.createElement("canvas");
|
||||
const ctx = canvas.getContext("2d");
|
||||
canvas.width = imageData.width;
|
||||
canvas.height = imageData.height;
|
||||
ctx?.putImageData(imageData, 0, 0);
|
||||
return canvas;
|
||||
}
|
||||
|
||||
// Convert the onnx model mask output to an HTMLImageElement
|
||||
export function onnxMaskToImage(input: any, width: number, height: number) {
|
||||
return imageDataToImage(arrayToImageData(input, width, height));
|
||||
}
|
||||
65
demo/src/components/helpers/onnxModelAPI.tsx
Normal file
65
demo/src/components/helpers/onnxModelAPI.tsx
Normal file
@@ -0,0 +1,65 @@
|
||||
import { Tensor } from "onnxruntime-web";
|
||||
import { modeDataProps } from "./Interfaces";
|
||||
|
||||
const modelData = ({ clicks, tensor, modelScale }: modeDataProps) => {
|
||||
const imageEmbedding = tensor;
|
||||
let pointCoords;
|
||||
let pointLabels;
|
||||
let pointCoordsTensor;
|
||||
let pointLabelsTensor;
|
||||
|
||||
// Check there are input click prompts
|
||||
if (clicks) {
|
||||
let n = clicks.length;
|
||||
|
||||
// If there is no box input, a single padding point with
|
||||
// label -1 and coordinates (0.0, 0.0) should be concatenated
|
||||
// so initialize the array to support (n + 1) points.
|
||||
pointCoords = new Float32Array(2 * (n + 1));
|
||||
pointLabels = new Float32Array(n + 1);
|
||||
|
||||
// Add clicks and scale to what SAM expects
|
||||
for (let i = 0; i < n; i++) {
|
||||
pointCoords[2 * i] = clicks[i].x * modelScale.samScale;
|
||||
pointCoords[2 * i + 1] = clicks[i].y * modelScale.samScale;
|
||||
pointLabels[i] = clicks[i].clickType;
|
||||
}
|
||||
|
||||
// Add in the extra point/label when only clicks and no box
|
||||
// The extra point is at (0, 0) with label -1
|
||||
pointCoords[2 * n] = 0.0;
|
||||
pointCoords[2 * n + 1] = 0.0;
|
||||
pointLabels[n] = -1.0;
|
||||
|
||||
// Create the tensor
|
||||
pointCoordsTensor = new Tensor("float32", pointCoords, [1, n + 1, 2]);
|
||||
pointLabelsTensor = new Tensor("float32", pointLabels, [1, n + 1]);
|
||||
}
|
||||
const imageSizeTensor = new Tensor("float32", [
|
||||
modelScale.height,
|
||||
modelScale.width,
|
||||
]);
|
||||
|
||||
if (pointCoordsTensor === undefined || pointLabelsTensor === undefined)
|
||||
return;
|
||||
|
||||
// There is no previous mask, so default to an empty tensor
|
||||
const maskInput = new Tensor(
|
||||
"float32",
|
||||
new Float32Array(256 * 256),
|
||||
[1, 1, 256, 256]
|
||||
);
|
||||
// There is no previous mask, so default to 0
|
||||
const hasMaskInput = new Tensor("float32", [0]);
|
||||
|
||||
return {
|
||||
image_embeddings: imageEmbedding,
|
||||
point_coords: pointCoordsTensor,
|
||||
point_labels: pointLabelsTensor,
|
||||
orig_im_size: imageSizeTensor,
|
||||
mask_input: maskInput,
|
||||
has_mask_input: hasMaskInput,
|
||||
};
|
||||
};
|
||||
|
||||
export { modelData };
|
||||
12
demo/src/components/helpers/scaleHelper.tsx
Normal file
12
demo/src/components/helpers/scaleHelper.tsx
Normal file
@@ -0,0 +1,12 @@
|
||||
|
||||
// Helper function for handling image scaling needed for SAM
|
||||
const handleImageScale = (image: HTMLImageElement) => {
|
||||
// Input images to SAM must be resized so the longest side is 1024
|
||||
const LONG_SIDE_LENGTH = 1024;
|
||||
let w = image.naturalWidth;
|
||||
let h = image.naturalHeight;
|
||||
const samScale = LONG_SIDE_LENGTH / Math.max(h, w);
|
||||
return { height: h, width: w, samScale };
|
||||
};
|
||||
|
||||
export { handleImageScale };
|
||||
25
demo/src/components/hooks/context.tsx
Normal file
25
demo/src/components/hooks/context.tsx
Normal file
@@ -0,0 +1,25 @@
|
||||
import React, { useState } from "react";
|
||||
import { modelInputProps } from "../helpers/Interfaces";
|
||||
import AppContext from "./createContext";
|
||||
|
||||
const AppContextProvider = (props: {
|
||||
children: React.ReactElement<any, string | React.JSXElementConstructor<any>>;
|
||||
}) => {
|
||||
const [clicks, setClicks] = useState<Array<modelInputProps> | null>(null);
|
||||
const [image, setImage] = useState<HTMLImageElement | null>(null);
|
||||
const [maskImg, setMaskImg] = useState<HTMLImageElement | null>(null);
|
||||
|
||||
return (
|
||||
<AppContext.Provider
|
||||
value={{
|
||||
clicks: [clicks, setClicks],
|
||||
image: [image, setImage],
|
||||
maskImg: [maskImg, setMaskImg],
|
||||
}}
|
||||
>
|
||||
{props.children}
|
||||
</AppContext.Provider>
|
||||
);
|
||||
};
|
||||
|
||||
export default AppContextProvider;
|
||||
21
demo/src/components/hooks/createContext.tsx
Normal file
21
demo/src/components/hooks/createContext.tsx
Normal file
@@ -0,0 +1,21 @@
|
||||
import { createContext } from "react";
|
||||
import { modelInputProps } from "../helpers/Interfaces";
|
||||
|
||||
interface contextProps {
|
||||
clicks: [
|
||||
clicks: modelInputProps[] | null,
|
||||
setClicks: (e: modelInputProps[] | null) => void
|
||||
];
|
||||
image: [
|
||||
image: HTMLImageElement | null,
|
||||
setImage: (e: HTMLImageElement | null) => void
|
||||
];
|
||||
maskImg: [
|
||||
maskImg: HTMLImageElement | null,
|
||||
setMaskImg: (e: HTMLImageElement | null) => void
|
||||
];
|
||||
}
|
||||
|
||||
const AppContext = createContext<contextProps | null>(null);
|
||||
|
||||
export default AppContext;
|
||||
Reference in New Issue
Block a user