lint: fix linter warnings reported by golangci-lint (#522)

- Fix #519
This commit is contained in:
Simon Klee
2023-11-07 10:23:06 +01:00
committed by GitHub
parent 9e0232f941
commit 0664105387
23 changed files with 425 additions and 431 deletions

View File

@@ -11,32 +11,32 @@ import (
"reflect"
"testing"
. "github.com/sashabaranov/go-openai"
"github.com/sashabaranov/go-openai"
"github.com/sashabaranov/go-openai/internal/test/checks"
)
func TestEmbedding(t *testing.T) {
embeddedModels := []EmbeddingModel{
AdaSimilarity,
BabbageSimilarity,
CurieSimilarity,
DavinciSimilarity,
AdaSearchDocument,
AdaSearchQuery,
BabbageSearchDocument,
BabbageSearchQuery,
CurieSearchDocument,
CurieSearchQuery,
DavinciSearchDocument,
DavinciSearchQuery,
AdaCodeSearchCode,
AdaCodeSearchText,
BabbageCodeSearchCode,
BabbageCodeSearchText,
embeddedModels := []openai.EmbeddingModel{
openai.AdaSimilarity,
openai.BabbageSimilarity,
openai.CurieSimilarity,
openai.DavinciSimilarity,
openai.AdaSearchDocument,
openai.AdaSearchQuery,
openai.BabbageSearchDocument,
openai.BabbageSearchQuery,
openai.CurieSearchDocument,
openai.CurieSearchQuery,
openai.DavinciSearchDocument,
openai.DavinciSearchQuery,
openai.AdaCodeSearchCode,
openai.AdaCodeSearchText,
openai.BabbageCodeSearchCode,
openai.BabbageCodeSearchText,
}
for _, model := range embeddedModels {
// test embedding request with strings (simple embedding request)
embeddingReq := EmbeddingRequest{
embeddingReq := openai.EmbeddingRequest{
Input: []string{
"The food was delicious and the waiter",
"Other examples of embedding request",
@@ -52,7 +52,7 @@ func TestEmbedding(t *testing.T) {
}
// test embedding request with strings
embeddingReqStrings := EmbeddingRequestStrings{
embeddingReqStrings := openai.EmbeddingRequestStrings{
Input: []string{
"The food was delicious and the waiter",
"Other examples of embedding request",
@@ -66,7 +66,7 @@ func TestEmbedding(t *testing.T) {
}
// test embedding request with tokens
embeddingReqTokens := EmbeddingRequestTokens{
embeddingReqTokens := openai.EmbeddingRequestTokens{
Input: [][]int{
{464, 2057, 373, 12625, 290, 262, 46612},
{6395, 6096, 286, 11525, 12083, 2581},
@@ -82,17 +82,17 @@ func TestEmbedding(t *testing.T) {
}
func TestEmbeddingModel(t *testing.T) {
var em EmbeddingModel
var em openai.EmbeddingModel
err := em.UnmarshalText([]byte("text-similarity-ada-001"))
checks.NoError(t, err, "Could not marshal embedding model")
if em != AdaSimilarity {
if em != openai.AdaSimilarity {
t.Errorf("Model is not equal to AdaSimilarity")
}
err = em.UnmarshalText([]byte("some-non-existent-model"))
checks.NoError(t, err, "Could not marshal embedding model")
if em != Unknown {
if em != openai.Unknown {
t.Errorf("Model is not equal to Unknown")
}
}
@@ -101,12 +101,12 @@ func TestEmbeddingEndpoint(t *testing.T) {
client, server, teardown := setupOpenAITestServer()
defer teardown()
sampleEmbeddings := []Embedding{
sampleEmbeddings := []openai.Embedding{
{Embedding: []float32{1.23, 4.56, 7.89}},
{Embedding: []float32{-0.006968617, -0.0052718227, 0.011901081}},
}
sampleBase64Embeddings := []Base64Embedding{
sampleBase64Embeddings := []openai.Base64Embedding{
{Embedding: "pHCdP4XrkUDhevxA"},
{Embedding: "/1jku0G/rLvA/EI8"},
}
@@ -115,8 +115,8 @@ func TestEmbeddingEndpoint(t *testing.T) {
"/v1/embeddings",
func(w http.ResponseWriter, r *http.Request) {
var req struct {
EncodingFormat EmbeddingEncodingFormat `json:"encoding_format"`
User string `json:"user"`
EncodingFormat openai.EmbeddingEncodingFormat `json:"encoding_format"`
User string `json:"user"`
}
_ = json.NewDecoder(r.Body).Decode(&req)
@@ -125,16 +125,16 @@ func TestEmbeddingEndpoint(t *testing.T) {
case req.User == "invalid":
w.WriteHeader(http.StatusBadRequest)
return
case req.EncodingFormat == EmbeddingEncodingFormatBase64:
resBytes, _ = json.Marshal(EmbeddingResponseBase64{Data: sampleBase64Embeddings})
case req.EncodingFormat == openai.EmbeddingEncodingFormatBase64:
resBytes, _ = json.Marshal(openai.EmbeddingResponseBase64{Data: sampleBase64Embeddings})
default:
resBytes, _ = json.Marshal(EmbeddingResponse{Data: sampleEmbeddings})
resBytes, _ = json.Marshal(openai.EmbeddingResponse{Data: sampleEmbeddings})
}
fmt.Fprintln(w, string(resBytes))
},
)
// test create embeddings with strings (simple embedding request)
res, err := client.CreateEmbeddings(context.Background(), EmbeddingRequest{})
res, err := client.CreateEmbeddings(context.Background(), openai.EmbeddingRequest{})
checks.NoError(t, err, "CreateEmbeddings error")
if !reflect.DeepEqual(res.Data, sampleEmbeddings) {
t.Errorf("Expected %#v embeddings, got %#v", sampleEmbeddings, res.Data)
@@ -143,8 +143,8 @@ func TestEmbeddingEndpoint(t *testing.T) {
// test create embeddings with strings (simple embedding request)
res, err = client.CreateEmbeddings(
context.Background(),
EmbeddingRequest{
EncodingFormat: EmbeddingEncodingFormatBase64,
openai.EmbeddingRequest{
EncodingFormat: openai.EmbeddingEncodingFormatBase64,
},
)
checks.NoError(t, err, "CreateEmbeddings error")
@@ -153,23 +153,23 @@ func TestEmbeddingEndpoint(t *testing.T) {
}
// test create embeddings with strings
res, err = client.CreateEmbeddings(context.Background(), EmbeddingRequestStrings{})
res, err = client.CreateEmbeddings(context.Background(), openai.EmbeddingRequestStrings{})
checks.NoError(t, err, "CreateEmbeddings strings error")
if !reflect.DeepEqual(res.Data, sampleEmbeddings) {
t.Errorf("Expected %#v embeddings, got %#v", sampleEmbeddings, res.Data)
}
// test create embeddings with tokens
res, err = client.CreateEmbeddings(context.Background(), EmbeddingRequestTokens{})
res, err = client.CreateEmbeddings(context.Background(), openai.EmbeddingRequestTokens{})
checks.NoError(t, err, "CreateEmbeddings tokens error")
if !reflect.DeepEqual(res.Data, sampleEmbeddings) {
t.Errorf("Expected %#v embeddings, got %#v", sampleEmbeddings, res.Data)
}
// test failed sendRequest
_, err = client.CreateEmbeddings(context.Background(), EmbeddingRequest{
_, err = client.CreateEmbeddings(context.Background(), openai.EmbeddingRequest{
User: "invalid",
EncodingFormat: EmbeddingEncodingFormatBase64,
EncodingFormat: openai.EmbeddingEncodingFormatBase64,
})
checks.HasError(t, err, "CreateEmbeddings error")
}
@@ -177,26 +177,26 @@ func TestEmbeddingEndpoint(t *testing.T) {
func TestEmbeddingResponseBase64_ToEmbeddingResponse(t *testing.T) {
type fields struct {
Object string
Data []Base64Embedding
Model EmbeddingModel
Usage Usage
Data []openai.Base64Embedding
Model openai.EmbeddingModel
Usage openai.Usage
}
tests := []struct {
name string
fields fields
want EmbeddingResponse
want openai.EmbeddingResponse
wantErr bool
}{
{
name: "test embedding response base64 to embedding response",
fields: fields{
Data: []Base64Embedding{
Data: []openai.Base64Embedding{
{Embedding: "pHCdP4XrkUDhevxA"},
{Embedding: "/1jku0G/rLvA/EI8"},
},
},
want: EmbeddingResponse{
Data: []Embedding{
want: openai.EmbeddingResponse{
Data: []openai.Embedding{
{Embedding: []float32{1.23, 4.56, 7.89}},
{Embedding: []float32{-0.006968617, -0.0052718227, 0.011901081}},
},
@@ -206,19 +206,19 @@ func TestEmbeddingResponseBase64_ToEmbeddingResponse(t *testing.T) {
{
name: "Invalid embedding",
fields: fields{
Data: []Base64Embedding{
Data: []openai.Base64Embedding{
{
Embedding: "----",
},
},
},
want: EmbeddingResponse{},
want: openai.EmbeddingResponse{},
wantErr: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
r := &EmbeddingResponseBase64{
r := &openai.EmbeddingResponseBase64{
Object: tt.fields.Object,
Data: tt.fields.Data,
Model: tt.fields.Model,
@@ -237,8 +237,8 @@ func TestEmbeddingResponseBase64_ToEmbeddingResponse(t *testing.T) {
}
func TestDotProduct(t *testing.T) {
v1 := &Embedding{Embedding: []float32{1, 2, 3}}
v2 := &Embedding{Embedding: []float32{2, 4, 6}}
v1 := &openai.Embedding{Embedding: []float32{1, 2, 3}}
v2 := &openai.Embedding{Embedding: []float32{2, 4, 6}}
expected := float32(28.0)
result, err := v1.DotProduct(v2)
@@ -250,8 +250,8 @@ func TestDotProduct(t *testing.T) {
t.Errorf("Unexpected result. Expected: %v, but got %v", expected, result)
}
v1 = &Embedding{Embedding: []float32{1, 0, 0}}
v2 = &Embedding{Embedding: []float32{0, 1, 0}}
v1 = &openai.Embedding{Embedding: []float32{1, 0, 0}}
v2 = &openai.Embedding{Embedding: []float32{0, 1, 0}}
expected = float32(0.0)
result, err = v1.DotProduct(v2)
@@ -264,10 +264,10 @@ func TestDotProduct(t *testing.T) {
}
// Test for VectorLengthMismatchError
v1 = &Embedding{Embedding: []float32{1, 0, 0}}
v2 = &Embedding{Embedding: []float32{0, 1}}
v1 = &openai.Embedding{Embedding: []float32{1, 0, 0}}
v2 = &openai.Embedding{Embedding: []float32{0, 1}}
_, err = v1.DotProduct(v2)
if !errors.Is(err, ErrVectorLengthMismatch) {
if !errors.Is(err, openai.ErrVectorLengthMismatch) {
t.Errorf("Expected Vector Length Mismatch Error, but got: %v", err)
}
}